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On the inverse problem of identifying the source term
in a pseudoparabolic equation
with a final time overdetermination condition

Abstract. In this paper, we consider the inverse problem for a linear pseudoparabolic equation describing
the temperature distribution taking into account external forces that depend only on the spatial variable.
The classical solution to the inverse problem under consideration satisfies the usual pseudoparabolic
equation, initial and nonlocal boundary conditions, and a final additional condition. The issues of existence
and uniqueness of the solution to the inverse problem are the subject of study in the work presented by
the author. As the main result, theorems on the existence and uniqueness of the classical solution to the
problem under study are formulated and rigorously proven. These theorems are completely proven in a
mathematically rigorous language using the method of separation of variables. In the course of the proof,
a system of orthogonal and biorthogonal basis functions of a special type was chosen in accordance with
the nonlocal boundary conditions. First of all, to prove the theorem on the existence of a solution, an
analytical formula for the solution was derived in the form of a series in the system of these functions,
their uniform convergence was analyzed according to the Weierstrass theorem, and the convergence to the
classical solution of the inverse problem under consideration was investigated. The proof of the theorem on
uniqueness was carried out by the method of the opposite assumption.
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nonlocal boundary condition.

Introduction

In this paper, we study the inverse problem for a
linear pseudoparabolic equation that includes an
additional term accounting for the effect of external
forces depending only on the spatial variable, with
the goal of determining the temperature. The
classical solution of this inverse problem satisfies
the standard pseudoparabolic equation, along with
the initial and nonlocal boundary conditions, as well
as the final additional condition. The primary
objective of this work is to prove the existence,
uniqueness and stability of the solution to the
inverse problem.

The nonlocal boundary conditions considered in
the present study were first introduced in the work
of N.I. Ionkin [1]. Later, A.A. Samarskii [2]
investigated the formulation of differential
equations with nonstandard boundary conditions. In
accordance with these works, boundary value
problems with the nonlocal boundary condition (3)
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became known as the lonkin—Samarskii problem.
However, historically, problems with nonlocal
boundary conditions can be traced back to the work
of V.A. Steklov [3].

In general, pseudoparabolic equations are
employed to describe important physical processes
such as hydrodynamics, filtration theory, continuum
mechanics, heat conduction in two-temperature
systems, dispersive flows, viscous flows in materials
with memory, and others. As an example, one may
mention the Kelvin—Voigt (Navier—Stokes—Voigt)
system of equations. The formulation of equation
(1) from physical laws and its mathematical
modeling can be found in the works [4-8].

There are very few studies devoted to the
inverse problem of determining the right-hand side
of a given equation that depends on the spatial
variable, or of reconstructing the right-hand side
itself. Under suitable assumptions on the given data,
authors prove existence and uniqueness of a
classical solution (u,f) to the corresponding
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inverse problem [9]. The authors of [10]
successfully obtained a stable and precise
reconstruction of the unknown spatial source term
using a combination of finite-difference methods
and Tikhonov  regularization. Theoretical
guarantees: existence, uniqueness and stability of
solution, and numerical solution (B-spline +
Tikhonov regularization + nonlinear least-squares)
are established by Huntul M.J., Khompysh Kh.,
Shazyndayeva M.K., Igbal M.K. [11]. In [12], the

authors demonstrated both theoretically and
numerically the existence of solutions using
fractional Landweber iterative regularization.

Author [13] have studied existence and uniqueness
of a classical solution to appropriate inverse
problems, under suitable assumptions on the
initial/boundary data. See also [16] and the
references therein.

In this work, the research methodology is purely
theoretical. The main objective is to establish the
existence, uniqueness and stability of a classical
solution to the inverse problem (1)—(4). The main
tool is the Fourier method in combination with
orthogonal and biorthogonal systems of functions
adapted to the nonlocal boundary conditions. The
proof of existence relies on the derivation of an
analytical formula for the solution in the form of
uniformly convergent series, justified by the
Weierstrass theorem. The proof of uniqueness is
based on the method of contradiction.

Materials and Methods

In this section, we present the formulation of the
inverse problem together with the methods used for
its analysis.

Problem statement. Let us consider the inverse
problem of determining the pair of functions
(u(x,1), f(x)) in the rectangle
O, ={(x,1):xe(0,1),£€(0,T), T <o} . The
inverse problem is to find wu(x,f)and f(x)
satisfying the pseudoparabolic equation

u-u.,—u, :f(X), (X,t)EQT (D

the initial condition

u(x,O):(p(x), x€[0,1] )

the non-local periodic boundary conditions

u(l,t)=0,

3)
u (0,0)=u(L,1), te[0,T],

and the additional final overdetermination condition

u(x,T)=w(x), xe[0,1], 4)

where @(x)and y/(x)are given functions, whereas
f(x)and u(x,t) are to be
determined.

the unknowns

Results and Discussion

Firstly, let’s give the definition of a solution to
the inverse problem (1)—(4).

Definition 1. A solution of the inverse problem
(1)-(4) is defined as a pair of functions
(u(x,1), f(x)) belonging respectively to the spaces

Cf,l (QT)K\CL? (Q_T) and C([0,1]), which satisfy
the pseudoparabolic equation (1) in the rectangle
O, , the initial condition (2) and the final condition
(4) on the interval [0,1], as well as the boundary

condition (3) on the interval [0,77].

Existence of the solution. In this section, the
existence of a solution to the inverse problem (1)—
(4) is established, and the following result is
obtained.

Theorem 1. Let @(x),(x)e C*([0,1]) be

functions satisfying the compatibility conditions
p()=0, ¢'(1)=¢'(0), )
y1)=0, y'(0)=y'(), (6)
P"(0) ="M, y' O =y"M) O

PO =¢"M, YO =p M) ®

Then there exists a classical solution
(u(x,t), f(x)), belonging respectively to the spaces

C>(Q,) and C([0,1]), of the inverse problem

St

(D).
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Proof. The proof of Theorem 1 is based on the
Fourier method.

We seek the solution of the inverse problem (1)—
(4) by expanding in series with respect to the special
system of basis functions

2(1-x), {4(1—x)cos2znx}

©)

{4sin27nx},_,

The system (9) was studied in [14,15] and
shown to be complete in L*(0,1) and to form a Riesz
basis. However, the system (9) is not orthogonal; for

u(x,t) =2u,(t)(1-x)+ i 4u, (t)(1-x)cos2mnx + i 4u, (¢)sin2znx

n=1

f(x)=2f,(1-x)+ > 4f, (1-x)cos 2znx+ Y _4f, sin27nx
n=1 n=l1

where u,(?), u,,(t), u,,(t) and the constants f5, fin,

fon are the unknown Fourier coefficients. Formally
assuming that the series for u(x,f) and f{x) can be
differentiated termwise, we substitute these series

u, (x,1) = 2ug (1)(1—x)+ D 4u;, (1)(1—x)cos 2nx + Y 4u} (1)sin 27rnx,

n=1

u (x,t)= Z du,, (1) (47rn sin 2zznx —4x°n* (1-x) cos 27mx) + Z du,, (1) (—4712n2 sin 27mx) ,

n=1

u_, (x,t)= Z dul (1) (47m sin 2znx —47°n*(1-x)cos 27mx) + z A (1) (—4712112 sin 27mx).

n=1

Plugging (13)—(15) into (1) yields

it the following biorthogonal system was given in
[15]

I, {cos2znx} _,, {xsin2znx} .  (10)

The system (10) is used both to prove the
uniqueness of the solution of the inverse problem
(1)—(4) and to determine the Fourier coefficients that
appear when the solution is expanded with respect
to the system (9). Hence, the solution pair u(x,?)
and f(x) of the inverse problem (1)—(4) can be

written in the series form

(11)

n=1

(12)

into equation (1).
Note that differentiating the series (11)—(12)
termwise yields the following expressions for

u, (x,0),u, (x,t) and u, (x,1)

2uy (1)1 —x)+ Z 4du (1) ((1 — x)cos 2znx —4znsin 27wnx — 4z’ n* (1 - x)cos 272'71)6) -

n=1

—z 4u, (1) (47171 sin 27znx — 47> n* (1 - x)cos Zﬂnx) + z du, (1) (1 +471°n’ )sin 27nx +

n=1

(13)
n=1
(14)
n=l1
(15)
n=l1
(16)

n=1

+z 16770 u,, (¢)sin 2zznx = 2. f, (1-x) + z 4f,,(—=x)cos2zwnx + z 4f, sin2znx

n=l1 n=1

n=1
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Also, imposing the initial and final conditions
(2) and (4) on the expansions (11) and (12) yields
the relations

uO (0) = q)O’ uln (0) = (Dln; u2n (O) = (02n; (17)

u(T)=vo; u,(T)=y,,; u,,(T)=y,,. (18)
where (00 ’ (oln ’ (02n and l/IO ’ !//ln ’ (//2n are, respecti—
vely, the Fourier coefficients of ¢(x)and y(x)
with respect to the system (10). They are given by

=[x,

1
= IO w(x)cos 2znxdx, (20)

V,, = IOI w(x)xsin 2znxdx.

Thus, from equation (16) and the conditions
(17), (18) we obtain the following systems of
ordinary differential equations for the unknown

coefficient functions u,(?), u,,(?), u,,(¢f) and the

constants fo, fl,,, fzn
uy(t) = fos

1
= | @(x)dx, { (21)
IO uy(0)=0,;  uy(T) =y,.
1
?, :IO @(x)cos2rnxdx, (19) u (s 4x°n? u (1) = 1.,
[ p)xsin2znxd U Az T e @)
= X)xsin 2z nxdx,
¢2n 0 ¢ uln (O) = ¢ln 5 uln (T) = Wln :
, 47’°n o 4n ,
ul (t)+ ——— u' (1),
2n() 1+4 2n() 1+472_2 2 1+472_ ln() 2 ln() (23)
u2n (0) = ¢2n b u2n (T) = l//Zn'
Note that the solution of problem (23) can be 4rin?
found only after solving (22). u, (¢) = Wlnz - P e e 1 |+ @,
Firstly, the solution of (21) is dzn
e 1+47r n? 1
(25)
Yo~ P
uy(t) ==t +¢,, =P,
0( ) T ¢0 (24) -fi}’l = 472.2"2 ¢1}’l - _l//41ﬂ_2}12 ¢1
£ = Yo% (/70 e I
‘ T Finally, the solution of (23) can be written in the

The solution of (22) is obtained explicitly as

form

47%n? 4,[2,12
- 22 472'11
U, (1) =, +C,, {e o —l}rm’e e,
(26)
2.2 Vi~ P
f‘2n :4” n ((02,, _CZn)_ﬂ.n gpln - 417[2,,,2 1
e_1+47r2n2 1
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where
1 47n Ay
C, =———F— -, ————————Te | 27
2n a7 l//2n (DZn (1 + 472'21’12)2 ( )

- 22
e 1+47°n _1

defined by (24),, (25),, (26), into expression (12),

Now, substituting the functions
we obtain the following functions wu(x,?)

u,(t), u,, (t), u,,(t), defined by (24)1, (25)1, (26):

into expression (11), and the numbers f, fin, f, and f(x)
— 0 _ _ 47%n? :
u(x,z)=¢(x)+2@z(1—x)+24 WO | o i 1 |4 g, [(1-x)cos 2anx +
n=1 - ”’21 2T
e 1+47°n _1 (28)
o0 B 47%n? 47[}’1 B an’n? .
+Y 4@, +C, | e ™7 1 |+ ———fe " |sin 27nx
Z ¢2n 2n (1+47Z_2n2 )2

n=l1

f =221+ S arn | g, - LB |- x)cos 2 +
n=1 T

eil-%—47rzn2 _ 1 (29)

+>47°n* (@, - C,, ) —47n| @, - % sin 27znx.
T

n=l1 B 22
e 1+47°n _1

applying the formula of integration by parts together
with the compatibility conditions (5)—(8), we can
rewrite them as follows:

Now, we show that the solutions (28), (29)
satisfy equation (1). For this purpose, substituting
expressions (19)—~(20) into the series (28), (29), and

_ © @ _ @ [ 4z’
u(x,z)=<o(x)+2@z(l—x)+2 T [e —l](l—x)cosznnx—
1

~ 4rtpt A
"= e 1+47%n> _
_ 47%n? L,
L2 Te 14xn’ 1 @ _ @ ( 4
e 2 2 .
+Z 33 T 22 TS 5 WI:2 2(01" e 7 1 [sin 27nx —
| T (l+7n”)” 2w | AT g (30)
e 1+47°n _1

2.2

o 1 * _ 4 4z ;

+E — %”, z%” e 4 _1 Isin 27rnx +
4rn
v drnt AT
e 14+47°n _1
2.2
o 1 ) _ @ 4T
Vi —Pu_ o w45 in 270

+Z 33 2. 2\2 4’
n=l T°n (1+47Z' n ) e*m 1
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B - 1 @ _ 4
f(x)22@(1—x)+z‘4752n2 ®, — Vi — P (1—x)cos27nx +

2.2
o 167°n* 4= "r
e 1+47°n _1
B 47%n” r
o Te +4x'n’ 1 4) _ (4 ]
+.167°0* | @y, —| —— St Vin - z(pl” sin 27znx + (31
— A’ (l+7°n°)" 8x’n AL

e_1+47r2n2 _ 1

o 1 @ _ 4 ) © 1 @ _ (4 ‘
+ Tonn? %4" = Pon_gin 270mx — Zl67m o, — Yin —Pu_ |sin22nx.
n=1 Tn il

4 4 22
167°n dz’n

- 22 n=1 22
e 1+47°n _1 e 1+47°n _1

where, the numbers @\, )" and w{”, " are,  Theorem 1, since the functions @" (x) and " (x)

respectively, the Fourier coefficients obtained from  are continuous on the interval [0,1], and by

the Fourier series expansion of the functions  Begsel’s inequality for trigonometric series, the

@" (x) and " (x). According to the condition of ~ convergence of the following series is deduced:

Z;| o, F<Clp" () 1. i=12 (32)

Z_;| v, P<Cly™ () I, i=12. (33)

From expressions (32), (33), it follows that the =~ Moreover, the derivatives of the function u(x,?)
set {(pl(:),(péi),(//l(j),l//éj),n =1, 2,__,} is bounded.  required in equation (1) are represented, according

to series (28), in the following form:

1 @ _ @4 4

W0_¢)O S Wln _(Dln 2,7

u (x,t)=2——"=-20-x)— E — e W7 (1—x)cos2znx —
t( ) T ( ) ) 7[2}’12(1+4ﬂ'2n2) 714Z~Z i | ( )

e +47°n _

_ant? L
. a2 4) (4) _4rn
1 4Te e 2 l//ln B goln !

2.2 .
+ — e 47 sin 2rnx —
+47°n’| zn(l+7°n*)  7'n’ | ¥
e 1+47n _1

© 1 yd b - az’n’ (34)
2.2 .
- — e M sin 2zrnx +
S rn(l+4r°n”) 21 ¢
e 1+4720° _1
. 1 @ _ @ 4

+Z Wln — (Dln
2 47202
e’ (1 + 47[2}12) ST

2.2
e 1+47°n _1

t
2.2 .
e 47 sin 2rnx —

o 4) (4) _ 4x*n?
4 ( - 2 Zt .

- - W': — Pin_ 1o 147 gin 27nx,

Tn

n=1 ﬂn(1+47zzn2) - T

e 1+47%n? _1




A. Shakir, A. Temirkhanova 81

@ _ 4 4x’n’®

0 1 t
U (x,1)=@"(x)— Z Wl:” ~ Pun_| ¢ ramn’ (1-x)cos2znx+
p i S
e 1+47%n* _1
y®—p® [ - 4z’ © 4 w@ g - artn
2.2 . 2 2 .
+Z — 1n 1n e 1+47°n _1 sin 27Z-nx_z = 1n 1n te 1+47°n sin 27rnx—
e A “an(l+4n°n) 427 4
2.2 2.2
e W ] e I+t (35)

47%n”

. _1 Py “4) (4) 4nn?
_z 4Te '+4mn 2 Vi,

22

S\ n(+7°n*y  o'n’ Arn

t
2.2 .
— P e 7 1 1sin27nx +

T
e 1+47rn _1

© 4 _ 4 [ _47n

+Z L Vo 0 e | —1|sin27znx
7Z' I’l 47°n?

n=l1

e W ]

‘//(4) —p® - a’n’
Uy, (X,1) = Z 1:” = In_ g ledrn’ (1 —Xx)cos2znx —
“+drin® n
e 1+47°n _1
© 4 @ _ @ 47%n° ,
l’//ln ¢1n e 1+47%n°

sin 27znx —

2.2
~ n(l+47x°n°) 74”’2’2
e 1+47°n _1

2.2
% 4 @ _ @ A
2.2 .
- Vi P vwar™s gin 27emx —
~ an(l+4x’n®)? A7
e 1+47%n* -1

@ _ 4 4

= 167n v, — 73!

1n 1n 1+4 .
E a +4722n2) po te 7 sin 2wnx +
n=l e 1+471 n? _1

4z%n?

. AgnTe 477 9 pO g A
Z p= | PP o 145 gin Drnx +

472n?

2
" 1+47°n 1+7rn L
e 1+47°n _1

@ _ 4 4n’n®

lr//2n _¢2n 1+4 22
+E e W7 gin 2 rnx
1+47°n® 47 (36)

e 1+47°n* -1

n=1

Now, let’s prove the uniform convergence of the  absolute value, we derive the following majorant
series (30)—(36). Estimating them term by term in  series:

(4) | (4) (4) | (4)

s o |+l [+l [+1ws) ) 6D
n=1 I’l4 ’

M.(T) ZI ZI
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|/

(4) |

(0]

xxt

v (T)(zlco

where M, (T), i=1,2

Since the numerical series (37) and (38) converge
by comparison, together with (32) and (33), the
uniform convergence of the functional series (30)-

are positive constants.

(36) on the closed domain QT follows from
Weierstrass’s theorem. Therefore, the functions
u(x,t), u,(x,t), f(x),u_ (x,1),u_(x1),

constructed from uniformly convergent series of

being

continuous functions, are continuous on Q. The

proof of Theorem 1 is complete.

Vi(x,0) =V (x,0) -

2
n=1 n

|l/jln Z|¢In |lr//ln Z|¢ln) |+|Wl4) |+|(0(4) |+|l/j2n |] (38)

Uniqueness of the Solution

Theorem 2. Suppose that the conditions of
Theorem 1 on the existence of a solution to the
inverse problem (1)—(4) hold. Then the solution to
the inverse problem (1)—(4) is unique.

Proof. Assume, by contradiction, that

' (x,0), f'(x)) and (u’(x,1), f*(x)) are two

solutions of the inverse problem (1)—(4). Let
V(x,t)=u'(x,t)—u’(x,t) and

F(x)= f'(x)— f*(x), then the functions ¥ (x,?)
and F'(x) satisfy the following problem

Ve (6, 1) = F(x), (x,0) €Oy

V(x,00=0, xe€[0,1] (39)
V,0)=0,V.(0,t)=V_(1,1), t<[0,T]
Vx,T)=0, xe[0,1]
The solution of the initial-boundary value  yhere Vo(0),V,,0),V,, ( t) and F,F, ,F, are the
problem (39) can be written, using the system of . .
functions (10), in the form of the series Fourier ~ coefficients of V(x,£) and F(x),

Vix,t)=V,()+ Z V., (t)cos2mnx +

n=1

respectively, with respect to the basis system (10).
They satisfy the following boundary value problems
for ordinary differential equations:

(*0) Vit)=F
Z (D) xsin2nx, (D =Fy. (42)
V,(0)=0; Vo(T)=0.
F(x)=F+ ZFlncos27rnx + A
n=1 —_ "2n
8 (41) VO 1+47°n* Van(0) = 1+4720>° (43)
+z F, xsin2mnx. V,,(0)=0; V7, (T)=0.
n=1
47*n F 4
t _ n t
hu O+ 1+47°n" V(1) = 1+47°n’ 1+47z2 V(0 72'2112 Va0 (44)

1n(0)=0, Vi, (T)=0.
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It is easy to see that the solutions of problems

(42), (43) and (44) are  V,(T)=0,
Vo@)=0,7,(6)=0,V,#=0 ad F,=0,
F,=0, F,,=0. Hence, V(x,t)=0 and
F(x) =0. Therefore, ul(x,t) = uz(x,l‘) and

f 1()C) =f 2()C). Thus, the solution of the inverse

problem (1)—(4) is unique. This completes the proof
of Theorem 2.

Example 1 (Stationary example). Consider the
functions

u(x,t)=sin2zx, f(x)=4x"sin2zx,
o(x)=sin2zx, w(x)=sin2zx

This example satisfies all equalities and
constitutes an explicit solution of the problem (1) —

(8).

Example 2 (Non-stationary example). Let’s
consider the functions

u(x,t)=
_ @’
= (2C)2 J{A0 ——(2C)2 je HeD™sin 27rx,
V4 T

f(x)=Csin2rxx, @(x) = A,sin2rx,
w(x)=A(T)sin2xx.

4,:= 4(0)

_Qa?
oy +[A° “an ]e o
T T

where C =const, and

A(f) =

Both examples confirm that the conditions of
Theorem 1 are satisfied and provide explicit
solutions of the inverse problem.

Noting that the investigations in this work are of
a theoretical nature, the authors obtained two
theorems as the main results. The first theorem
establishes the existence of a solution to the inverse
problem for a linear pseudoparabolic equation,
while the second theorem proves the uniqueness of

its classical solution. The obtained results were
discussed and approved among young researchers
and scientific staff of the Laboratory of Differential
Equations and Control Theory of the Faculty of
Mechanics and Mathematics at Al-Farabi Kazakh
National University.

Discussion

The main object of study in this article is the
inverse problem posed for a linear pseudoparabolic
equation. Two principal difficulties can be
highlighted in this problem: first, the imposition of
nonlocal boundary conditions, and second, the
determination of the right-hand side depending on
the spatial variable. In the case of nonlinear
equations, the determination of the right-hand side
depending on the spatial variable, or of its
coefficient, becomes even more challenging. In
fact, research in this direction is almost
nonexistent. Therefore, the conclusions obtained in
this article regarding the determination of the right-
hand side depending on the spatial variable
represent valuable results. Consequently, the
findings presented in this work will be useful for
further studies on numerical solutions and practical
applications.

Conclusion

This work considered the inverse problem for a
linear pseudoparabolic equation with an additional
term representing the effect of external forces
depending only on the spatial variable, together with
the determination of temperature. The study
presented the definition of a classical solution. By
means of biorthogonal and orthogonal systems,
theorems on the existence, uniqueness and stability
of the classical solution to the inverse problem were
formulated and rigorously proven in a
mathematically precise and clear manner.
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