International Journal of Mathematics and Physics 6, Nel, 33 (2015)

UDC 519.6

"A.A. Eleuov, *N.N. Tungatarov, °F.K. Yakhiyayev

12 Faculty of Mechanic-Mathematical, Al-Farabi Kazakh National University, Almaty, Kazakhstan;
3Scientific-Research Institute of Mathematics and Mechanics,
Al-Farabi Kazakh National University, Almaty, Kazakhstan
“e-mail: Eleuov@mail.ru, Nourmat@mail.ru

A numerucal numerical method for the restoration
of the five diagonal symmetric matrices from the spectral data

Abstract. In this work the possibility of restoration of real symmetrical five diagonal final matrixes using
four numerically sequences is studied. Three from these four numerically sequences are interpreted as sets
of eigenvalues of the considered matrix and else of two matrixes, obtained from considered matrix delet-
ing some diagonal elements. The concrete formulas of construction of matrix elements using four sets of

eigenvalues are obtained.
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Introduction

Strip matrixes appear from the discreteness
of boundary-value problems for the linear diffe-
rential equations in the section. The algorithm of
the restoration of three diagonal matrices from
two spectra can be found in the work [1]. Inverse

ag by ¢

by a b ¢

co b ay b
g by a3

All numbers a,, 4, ,....,a,,by,b,,....,b, are real,
and numbers ¢, ¢,,....,C,_, are positive.

Main body

From the work [3] it is known that the eigenva-
lues of matrix A are real. This is obvious. In our
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spectral problems for five diagonal unitary ma-
trices are examined in the work [2]. In this work
the algorithm of the single-valued restoration of
five diagonal symmetrical matrix is indicated. At
the beginning of work the properties of the ei-
genvalues of the symmetrical five diagonal ma-
trixes are investigated

%)
by 3
bn—3 ap-2 bn—2 Cn-2
Cn-3 bn—2 an-1 bn—l
Cpn-2 bn—l a, |

work we prove the not entirely obvious properties of

cigenvalues of matrix 4. Denote P, (4)=

=det(4—AE).
Zeros of the polynomial P, (A) determine all

eigenvalues of matrix A . Consider the equation

Ay =29 =P, 1 (D), 8y =(1,0,..,0) (1)

Printed in Kazakhstan



34

A numerucal numerical method for the restoration of the five diagonal symmetric matrices from ...

Assertion 1. For any complex value A there ex-
ists a vector y = y(A1), which satisfies the equation

(1).

Let A be a fixed complex number. Replace the
column j of matrix (4 — AE) by the column EOT .

By y, (1), j=1,2,...n+1denote the determinant

Yo(A) = det

of the modified matrix. Compose the vector

GADT = (0 (A): 31 (A)seecces Y1 (A)) . By direct
checking we are convinced, that y ;_;(4)are poly-

nomials from A, and vector y(A)satisfies the equa-
tion (1) for any complex A .

Note that
G
by ¢
cn74 b”{‘ an—z - ﬂ' bn72 can
cn73 bn72 anfl - ﬂ’ bll*l
cn—2 bn—l an - ﬂ’_

and its zeros coincide with the eigenvalues of the truncated matrix B of the dimensionality 72 X 71, where

ap b ¢
by ay by ¢
cq by a3 b3
B:
Cnd b3 ay3 by ¢y
Cn-3 bn72 ap-1 bnfl
L Cn-2 bnfl ap |

The eigenvalues of initial matrix we will number in the order of their growth

Ao S LS4, )
Eigenvalues of matrix B analogously number
< py < <y, 3)
In the following the zeros of element
_bo b, G |
c a,—-A b, ¢,
b, a,—A by, ¢,
()= DR
L can bnfl an - /1_
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have important role.
y,(A)is  polynomial

(n —1) with the leading coefficient (b (— l)n_1 ).
By

from Athe degree

72| < 3] < e <y (4)
denote the zero of polynomial y,(4).

We will use the spectrum of the matrix C . Ma-
trix C is obtained from the matrix B by the deletion
of the first line and first column.

are eigenvalues of matrix C in the order of their
growth.

Formulation of the problem of the restoration
All elements

ao,al,....,Cln,bo,bl,....,bn 5C0sCloeeesCyyp—2 of

matrix A to restore on the sequences (2), (3), (4),
(5).

The number b, is assigned, and one of the num-
bers of sequence (4) is considered unknown. The
algorithm is illustrated below.

Results of the direct problem

Some properties of the sequences (2), (3), (5).
Lemma 1.The following identity is satisfied for
any

A+ U

Ba(D)y () =P, (1) y,(A)
A—u '

<Y(A)y(u) >=

Consequence 1. The equality

PO = P (A)yy ()= By (1) 7(2)

is fulfill for any A .

Proof of the lemma 1.
Accoding to (1) the correspondence

AFA)=2A §A)+ P, (A) 6, (6)

is fulfill for any A .

The vector equality

A¥(w) = uy(p)+ P, (1)6, ()

is fulfill for any .
By scalar multiplication of all members of
equality (6) to the vector y(u), we obtain:

<AY(A); (1) >= A< (A, Y1) > +F,11 (Do (1) (8)
Analogously from (7) we obtain
< AY(1); Y(A) >= 1 < (10, J(A) > +F,, (13, (A) - 9)

Subtract equality (9) from (8)and using

A=4T , we obtain result of lemma 1.
Consequence 1 follow from
1.

By A denote the set
()] > 0.

lemmal for

of complex A for

Theorem 1. The following assertions are fulfill
on the set A:

a) All eigenvalues of matrixes 4, C and B,
which belong to A, simple and real;

b) Eigenvalues of matrixes A and B, B and
C, which belong to A ,do not coincide;

c) the following inequalities fulfill for eigenva-
lues

/10<,L11</11<‘L12< ..... <,un_1</1n_1

Matrixes A and B have the real simple eigen-
values(SBISIFOTCSA CYIIECTBEHHO MPOCTBIMH MaTpH-
mamu), and eigenvalues of matrixes 4 and B inter-
change.

Proof of theorem 1.

Let Ay € Ais eigenvalues of matrix A4, then

P,.1(49) =0. Accoding to consequence 1 we

have 0 < [F(D)|° = Py.1(A)yo(2). Then the
numbers P’ (4,) and y,(4,) arenotequal to
zero. It means that Py 1(49) #0, and Ay —is

simple eigenvalue of matrix B .
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Assume that 1 € A is eigenvalue of matrix B,

then yo(#)=0.

Accoding to consequence 1 the following equal-
ity is carried out

0 < [3C)|> = =Pp1 (0¥ (10) -

Consequently, the number P, ;(gp)is not
equal to zero, thus £/ cannot be eigenvalue of ma-

trix A . From other side it follows from the inequali-
ty vo(uo) =0, that pis simple eigenvalue of

matrix B . Assertions prove analogously for matrix

C.

Observation. If A € A then Y(Ap) =0, that is
all elements of vector y(Agy)are equal to zero.
Hence, in particular it follows that P, 1(4()=0.
That is  all P(4),  y(4),

»(4), -...»,(4,) are equal to zero for Ay eA.

numbers

Results on the problem of the restoration

In this point we consider that three sequences of
the numbers assigned (2), (3), (4), (5). We should
find three sequences

ag ap.... a,
b by.., b,

] Couensy

Examine the equation

(A-AE)X(A) = 5‘0, (10)

By xo(4) ,x(4) ,

elements of vector X(A4).

vy X (A) denote the

For example, for x,(A) the following formula is
fulfill

)
xou):}fO((;), it P, (A)=0. (11)

Analogously, the equality is correct

)

x,(/1)=—P (/1),

if B, (A)=0. (12)

From the other side, for|/1| > ||A , using a num-

ber of Neumann, we obtain the relationship

X(A)=(A-AE)"'6,=-A"(E —%A)‘ISO =

1 1 A +...)0, :—%50——2A§0—

1
-—(E+—4+—
l( A A’

Hence
1

xo(A) = (¥(A),80) = —7—7(A50;50> —/11—3<A250;50> -

Examining the equality (11) more detail for V‘O‘ > HAH = V‘n

|| -
2 FAzéo—

(13)

, we obtain
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xo(A) = - yo(d) _ G =My = A)(pty = 4) _ Yo(40)
Pyt (D) (Ao = AN = DBy = 2)  Poyy1 (AN Ao — 2)
o) . v @) 1 A A | (14)
B ()4 - 4) Poi(n)(Ay =2) P (D) |4 22 23
2
+ J,/O(ﬂ) 1+}g+}Ll FopFont ):0(/1) +ﬂg+ﬂ” +.
P[4 2 2 P |4 220 23
Comparing (13) u (14), we obtain the infinite for k=1,2,.. The same system of equations fol-
system of the relationships lows for the matrix elements B
VS S L Yo(4)) 55y e C - puEY (g
(460:6,) = -2, A ==~ (1) (BT00:00) = =2, 4] vo(u,)
0 n+1 (ﬁ*,) ‘ ’

Systems (15), (16), (17) are infinite system for

for k=1,2,.. Analogously from (12) we obtain determining the elements of the matrix 4 from the

the infinite system of the relationships _ ' D _
known right sides. Let O} is the vector with the

n v, (1)) zero components, besides (k +1)—, which is equal

S SN k
(4 50 ’ 51> - Z pro(a (16) to one. Produce some calculations. Note
0 n+l1 ( i )

A aogo +b051 +c

Ag :b050+a151+b152+c153,

A6, —ck725k72+bk715k71+ak5k+bk5,{+l+ck5k+2,
k=23,.n-2

4 5: = cn—35:n—3 +b,,0,,+ an—lgn—l + bn—lgn’
A 5 cnfzgnfz + bn—lgn—l + angn.

By the induction it is easy to prove, that
kS _ (k) § (k) § (k) §
A" 6,=d,"'6,+d;"0,+...+d,,’0,,.

+1
Following recurrence formulas are true for the coefficients d 5 ) :
dék”) = aod(()k) + bodl(k) + codék)
dF*D = poa ) v aya P 1+ pyd P 4+ epa P
dFD = egd$ +byd ) v aydlF) v byd ) eyallt)

(k+1) _ (k) (k) (k) (k) (k)
dj _cj—2dj_2+bj—ldj_1+ajdj +bjdj+1+cjdj+2
and
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m_ . g0 _p . g _
d,’ =a,;d "’ =by;d,” =c, .

Here, subsequently we consider that the num-

bers a; b/._l, iy

J > n . Hence it is apparent that coefficients

are equal zero for

d ;-k) depend only on the row elements of matrix A

with  the numbers  (0),(I),(2), (3),....,
(2k—3),(2k—2). Formulate this result in the form
of lemma.

Lemma 1. Let k 1s fixed natural number. For
j=0,1,...,2k —1 the numbers dj(.kﬂ) depends

only on the collection

k+1 k
d§k+ ):azk dék) + [k s

k+1 k
dékil) =byy dék) + 2k +1>

(k+1) _ (k)
dypvn =Cok oy

where f,,, f,,,, depends only on the collection

{ao ybysco a0,y by L0 }
Analogously we obtain following representation

ks _ (O S k) s k) §
A6, =cy 0, +¢; 0, + ...+ 31001

{ao abo »Cor 9b1 2Cpoeees oy 9b2k—1 »Cop } For coefficient cg-k) the following recurrence
The numbers d 5:“) ,d ;iﬂ) ,d ;1}:12) have representa- formulas are true.
tion
(k+1) _ (k) (k) (k)
Co =a,c, +b,c;" +cyc,’,
(k+1) _ (k) (k) (k) (k)
c, =b,c, +ac;” +bc,’ +cic,’,
(k+1) _ (k) (k) (k) (k) (k)
¢y U =c e tb e tase H b +egeg
and

H _ 7z ..
c(())—bo,c1

Note that the coefficients cg-k) depend only on

the row elements of matrix Awith the num-
bers (0), (1), (2),....(2k — 2),(2k - 1) .
Formulate this result in the form of lemma.

Lemma 2. Let k is fixed natural number. For

. e+
j=0,1,...,2k the numbers Cﬁ D depend only on
the collection

{ao 2By s Cosa1,b; 500 5. a0, .0y }

(k+1) (k+l) _(k+1)

The numbers C5;,35C5441 5Copsnr  have repre-

sentation
(+1) (k)
Copsl =i Copr T g s

(

SEUURN () IO NS ()
=a,;c, =b,;c;’ =c.

(hk+l) )
Cotrr = Dopy o F o

(k+1) _ (k)
€2%k+3 T2k +1 2441
where 75,9, 41 depend only on the collection
{ao N N N N N AN }

Lemma 3. For any natural k the following re-
presentation is true

26413 LS\ (k) g (k)
(A770,30,) = aydy dy, + €y
8211
{ao NN AN AN N N N oy }

For the proof of lemma 3 examine the scalar
product

where depend only on the collection
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2k 2k+2 2k

2%+1 3¢ .S\ kG . gkl 3\ _ kg . (k+1) &\ _ (k) g(k+1) _
(A776y;0,) =(A"0,,4 50>_<Zdj 51"2511‘ 5">_sz/‘ d-/ -

j=0 i=0 J=0
P IEINE (k) (k) (k) ()4 87 g gk
+ + *
= d2k d2k + Zd/‘ dj = dzk (czk—zdzkfz + b2k—1d2k—1 + azkdzk )+ Zdj dj - (18)
=0 Jj=0

2k-1

_ (k) g(k) (k) (k) (k) g(k) (k) g (k+1)

=(ay dyy dyy )+ Cop ol ydyy +byy dyy 1 dyy +Zdj dj
=0

Note that the components which are out of
round brackets depend only from the first (2k —l) <A2k+250;50> = (a2, +b2 +c2)dPd + h,,

lines of matrix 4. From (18)and according to lem-  \ here number h,, , depend only on the collection
ma 1, follows the assertion of the lemma 3.

Lemma 4. For any natural k following represen- {ao ,by.conar,b .0, a0, .00 }

tation is true For the proof of lemma 4 examine the scalar
product
P ol 2 ol 2 2k+2 (ke1) 2k+2 . N 2k+2 * 1)
2k+2 . _ +1 . +1 _ +1 . (k+1) _ +1) +1) _
(47200300 = (A0 A6,) = ( 3 df V65 D di Vo) = df N =
Jj=0 i=0 J=0
2k-1
_ gUeHly g0y | g (k) g(k+1) (k1) g(k+1) (k1) g (k+1)
_d2k+2 d2k+2 +d2k+1 d2k+l + d2k de + zdj dj
=0

According to lemma 1 follows the assertion of  where number /,, , depend only on the collection
the lemma 3.

Lemma 5. For any natural & following represen- {ao N AN N RN PN Y Sy }
tation is true For the proof of lemma 5 examine the scalar
263 .S\ k k-1 k k-1
(A76,:6,) = b2k—ld§k)c§k—l) + aZk—]dék)—]cék—]) + hy, product

- = - _ 2k . 2k _ 2k
<A2k50;51> — <Ak50;Ak51> — < Zdj(k)é‘l’zcl(k)é‘l> :Zdj(‘k)c;k) —
=0 i=0 =0

2%-2

_ k) (k) (k) (k) (k) (k)

=dy oy +dy 0 + Z dj ¢;
=0

b1 3 L SN (k) ,(k=1)
According to lemma 2 we obtain the equality (4 50 > 51> o b2k d2k Cokt Copr T

S 2k=2 (k) ,(k-1)
(A45:5) =dDe® +d® e + ¥ dWe = Fayd oy Cop by + Py
j=0
:déﬁ)bzk_]cg’;:ll) +d§i)_]a2 k-1C£I/:11) + hy where number p,, , depend only on the collection

{ao N S N N RPN BN VRPN YR }
For the proof of lemma 6 examine the scalar
product

The assertion of lemma 5 follows from the last
formula and the lemmas 1 and 2.

Lemma 6. For any natural £ following represen-
tation is true
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2k+2

;0 =(A16;4°6) =( D d"s,
Jj=0

<A2k+]50

— gk )

(k+1)
2kt g Ty

According to lemma 1 we obtain the equality

<A2k+l§o

2k+1

Zc(k)5> zd(kH) ) —

k) S (k) (k)
¢y + Zdj c;

Jj=0

2%-1
.5 k k k k+1) L (k
; 0) = (by, dz( )"‘fzkﬂ) Czk+1 + (ay, dz(k) + ) C( )+ Zd; : )Cj' '=

=0

_ (k) (k) (k) (k)
=(by dyy Cop + Ay dyy O ) Doy

Hence follows the assertion of the lemma 6, ac-
cording to lemma 2.

The following two lemmas relate to the ma-
trix B, which is analogous to the matrix A4 . There-
fore its properties are analogous to the properties of
the matrix 4 .

Lemma 7. For any natural k following represen-
tation is true

2k+1 DTk, ~
(B™ 5095 >_a2k+ld2(k)d( )+ 8o2k-1>

where numbers ,, ,, d\; , d\;’ depend only on
the collection

{al by, ,a,,b),¢, 5.0y, ,b,, .0y, }

Lemma 8. For any natural k following repre-
sentation is true

2423 LS\ 2 2 2 T (k) 7 (k)
(B 00300) =agsy +hyp + o) dy dy + Gy

~ 7k
where numbers §,, ,, d.}’

,d, (k) depend only on
the collection

{al ’bl 901 ’aZ ’b2 902 9""a2k 9b2k ’CZk }

Conclusion

Algorithm of the restoration of matrix elements 4.
1. Let the elements with the numbers

{ao NN N RN YN R S } are

founded already.

2. The element {aZk } can be found from the
lemma 3. It is determined (unequivocal) unambigu-
=Cp2Copy 7 Co > 0

3. The element {bZk } can be found from the
lemma 6. It is determined (unequivocal) unambigu-

(k-1)
s Cor s Copy > 0.

. k
ously, since d ; k)

. (k)
ously, since d 2%

4. The element {CZk } can be found from the
lemma 4. It is determined (unequivocal) unambigu-

ously, since di > 0.

5. The element {Cl2 P } can be found from the

lemma 7. It is determined (unequivocal) unambi-
guously, since dz(,f) >0.
6. The element {bz,(+1 } can be found from the

lemma 5. It is determined (unequivocal) unambi-
k)L

guously, since d5;.5 » Copiis
7. The element {Czk+1 } can be found from the
lemma 8. It is determined (unequivocal) unambi-

guously, since d,\ > 0.

Thus, all elements of initial matrix are restored.
Formulate the basic result of work.

Theorem 2. If sequences (1), (2), (4) are eigen-
values of matrixes 4, B, C, and sequence (3) are
zeros of polynomial y, (/1), then matrix elements
are restored unambiguously on the indicated se-
quences. The algorithm of restoration is given.
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