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Quasi-2D vortex structures in turbulent flows:  
a Lagranjian model with fractal effects 

Abstract. This paper presents a physically motivated model of quasi-two-dimensional vortex structures in 
turbulent flows. The theory of quasi-two-dimensional turbulence explains many phenomena in geophysical 
hydrodynamics, since due to the rapid rotation of the Earth, large-scale movements of the atmosphere and 
ocean almost two-dimensional. Quasi-2D turbulence is approximately two-dimensional and is described by 
equations containing additional terms. Such additions allow us to take into account weak three-dimensional 
effects that arise in real conditions, for example, in the atmosphere or ocean. We consider the basic equations 
for the velocity and pressure fields using the Lagrangian frame and incorporating centrifugal and Coriolis 
forces, as well as fractal disturbances on the vortex surface. Numerical simulations implemented in MatLab 
reproduce classical vortex behavior and reveal the influence of fractal corrections on field asymmetry. The 
model aligns well with existing experimental data and offers a foundation for analyzing energy transport 
and vortex interactions in stratified or thin-layered turbulent systems.
Keywords: quasi-two-dimensional turbulence, fractal boundary, Lagrangian frame, streamfunction, vortex 
elements, numerical simulations.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Introduction 
 
Turbulent flows in natural and technical systems 

often represent coherent vortex structures that display 
reduced dimensionality due to geometrical 
constraints or strong rotation. In particular, quasi-
two-dimensional turbulence (quasi-2D turbulence) is 
characteristic of systems where motion is 
predominantly planar due to strong rotation or 
confinement [1-3]. Such flows arise in geophysical 
contexts (the formation of mesovortices or cyclones 
in the atmosphere and ocean), plasma environments, 
and thin-layered fluids [4-5].  

The most famous result of the theory of 2D 
turbulence is conclusion that the energy cascade is 
directed towards large scales and not towards small 
ones (as in the 3D turbulence case) [6]. Small-scale 
vortices merge into large, coherent structures in such 
cases, which play a dominant role in the transport of 
momentum, heat, and other physical quantities. 

In contrast to ideal 2D turbulence governed by 
strictly two-dimensional Navier-Stokes equations, 
real quasi-2D systems are influenced by vertical 

fluctuations, stratification, and surface instabilities 
[1]. This distinction is particularly important in 
geophysical and plasma systems, where the 
emergence of coherent vortex structures is associated 
with stratification and anisotropy [5, 7]. Some studies 
have highlighted the role of coherent in mesoscale 
dynamics [7] and the importance of anisotropic 
dissipation [2, 8]. Accurately capturing the geometry 
and dynamics of such systems requires models that 
account for deviations from perfect symmetry and 
homogeneity. Understanding the dynamics of such 
vortices, especially their geometry and interactions, 
remains an open problem of both theoretical and 
experimental interest.  

Modern approaches to modeling quasi-2D 
vortices include both numerical techniques and 
simplified analytical frameworks in which the vortex 
is treated as the fundamental structural unit of the 
flow. Such methods are commonly employed in the 
study of vortex crystal, ring vortices in thin fluid 
layers, and plasma turbulence [9-14]. Existing 
research has demonstrated the effectiveness of 
physically based models in the study of turbulence, 
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using methods from dynamical systems theory, 
nonlinear physics, and synergetics [15-17].  

Recent studies have introduced reduced-order 
vortex models, spectral closures, and Lattice-
Boltzmann-based approaches to model quasi-2D 
turbulence. However, there remains a gap in 
accounting for microscale irregularities, such as 
surface roughness and localized pulsations, that may 
influence the internal structure of vortices. Several 
works [18, 19] have shown that introducing fractal 
corrections can significantly alter energy transport, 
intermittency, and coherence in turbulent flows. 
Moreover, earlier measurements have shown that 
turbulent interfaces, isoscalar surfaces, and 
dissipative structures exhibit measurable fractal 
geometry, supporting the validity of fractal 
descriptions of turbulence [20].  

While fractal models are commonly employed in 
the study of chaotic dynamical systems, their 
application to the microstructure of turbulent vortices 
remains relatively unexplored. This work addresses 
the formation and evolution of a quasi-2D vortex 
bundle in a submerged viscous medium, using a 
Largangian framework that incorporates inertial 
forces and fractal perturbations. The core hypothesis 
is that surface irregularities of a vortex filament, 
modeled as scale dependent distortions, can affect the 
pressure and velocity field structure. Numerical 
modeling is carried in the MatLab to evaluate the 
obtained field distributions and particle trajectories. 
This approach is relevant from a fundamental 
perspective, contributing to the understanding of self-
organization in turbulence, and for practical 
applications. The model also serves as a basis for 
constructing simplified turbulence closures in cases 
where full 3D modeling is computationally 
inefficient. The proposed model can also be applied 
to several practical problems. In particular, it may 
help to describe mesoscale atmospheric vortices, 
cyclone dynamics, and mixing processes in thin 
ocean layers. 

 
Theoretical framework 
 
At small scales, the turbulent flow exhibits 

intermittent vortex filaments. These structures, when 
spatially localized, demonstrate quasi-2D dynamics 
dominated by rotation in the plane of the filament 
cross-section. The predominance of rotation in one 

direction is due to the stretching of vortex tubes until 
the rupture, due to tendency of fixed particles of the 
liquid to move away from each other, i.e., weakening 
the correlations of the dynamics characteristics. This 
is one of the main mechanisms for generating 
turbulence [21]. Less intense, of the order of 
pulsation, motion along vortex tubes must be taken 
account in quasi-2D motion.  

To describe the structure of quasi-2D turbulent 
flows, we consider a Lagrangian approach based on 
the vorticity-stream function formulation. In this 
setting, the motion of vortex elements is governed by 
a reduced Navier-Stokes system that incorporates 
Coriolis effects, pressure gradients, and surface 
geometry. This formulation is applicable to 
geophysical and environmental flows where rotation, 
stratification, and confinement to thin layers lead to 
quasi-two-dimensional behavior.  

Figure 1 schematically explains what has been 
said. In cross-section 2, where the core radius of the 
vortex satisfies 𝑟𝑟𝑟𝑟02 < 𝑟𝑟𝑟𝑟01, the angular velocity Ω02 is 
greater than Ω01 (Ω02 > Ω01), in accordance with the 
law of conservation of angular momentum. Quasi-2D 
motion implies a coupling between rotation in the xy-
plane and pulsation motion induced by the 
nonstationary surface perturbation 𝜂𝜂𝜂𝜂 = 𝜂𝜂𝜂𝜂(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑡𝑡𝑡𝑡) of 
any cross-section (Fig.1). 

Such behavior can be simulated using layered 
ring elements with a distributed angular velocity su-
bject to inertial forces (centrifugal and Coriolis) and 
internal structural restrictions. The model includes 
𝜂𝜂𝜂𝜂(𝜃𝜃𝜃𝜃) fluctuating superficial distrurbances interpreted 
as fractal corrections. The inertial forces per unit 
mass are given by centrifugal 𝐹⃗𝐹𝐹𝐹𝑐𝑐𝑐𝑐 and Coriolis 𝐹⃗𝐹𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐: 

 
𝐹⃗𝐹𝐹𝐹𝑐𝑐𝑐𝑐 = 𝑟𝑟𝑟𝑟0Ω02,    𝐹⃗𝐹𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = −2�Ω��⃗ 0𝜐⃗𝜐𝜐𝜐�.           (1) 

 
These forces are expressed through the 

circulation of the vortex nucleus Γ0: 
 

Γ0 = �𝜐𝜐𝜐𝜐0𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟0 = �Ω0𝑟𝑟𝑟𝑟0𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟 = 

Ω� 𝑟𝑟𝑟𝑟0𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟0

4𝜋𝜋𝜋𝜋

0

= 2𝜋𝜋𝜋𝜋Ω0𝑟𝑟𝑟𝑟02.                 (2) 

 
Γ0 is condition for stationary generation of 

turbulence.
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Figure 1 – Scheme of the quasi-2D vortex filament 

 
 
R0 is radius of the vortex filament, 𝑟𝑟𝑟𝑟01 and 𝑟𝑟𝑟𝑟02 are 

core radii of the vortex in different cross-sections of 
the filament, Ω01 and Ω02 are angular velocities in 
cross-sections 1 and 2, respectively, 𝜂𝜂𝜂𝜂 is perturbation 
of the vortex surface level. 

Using Kelvin’s circulation theorem [22] and 
accounting for viscosity via modified pressure-
density relations, we derive the governing equations:  

 
𝑑𝑑𝑑𝑑𝜐𝜐𝜐𝜐
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= −
1
𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟

+ Ω2𝑟𝑟𝑟𝑟 + 2Ω𝜐𝜐𝜐𝜐,               (3) 

 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑐𝑐𝑐𝑐
𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟

+
𝜐𝜐𝜐𝜐𝑐𝑐𝑐𝑐
𝑟𝑟𝑟𝑟

+
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝜂𝜂𝜂𝜂(𝑟𝑟𝑟𝑟).                  (4) 
 
Eq.(3) is momentum balance and true in the 

approach of a vortex ring in cylindrical symmetry. 
Eq.(4) is continuity and represents mass conservation 
in cylindrical coordinates. Here, the additional term 
𝜂𝜂𝜂𝜂(𝑟𝑟𝑟𝑟) accounts for small-scale fractal perturbations to 
the vortex cross-sections, effectively modifying the 
divergence of the velocity field and modeling 
sourface roughness or pulsational instability of the 
vortex interface. This approximation allows for a 
better fit of the model with experimentally observed 
vortex structures in which spiral or wave-like 
distortions are observed.  

The distribution of velocity 𝜐𝜐𝜐𝜐𝑐𝑐𝑐𝑐  and pressure 
associated with 𝜂𝜂𝜂𝜂(𝑟𝑟𝑟𝑟) in a turbulent vortex can be 

determined using these equations. A vortex with 
velocity distribution is chosen as a reference system: 

 
𝜐𝜐𝜐𝜐(𝑟𝑟𝑟𝑟) = 𝜐𝜐𝜐𝜐0 ∙

𝑟𝑟𝑟𝑟0
𝑟𝑟𝑟𝑟

, 𝑟𝑟𝑟𝑟 𝑟 𝑟𝑟𝑟𝑟0.                  (5) 
 
For 𝑟𝑟𝑟𝑟 𝑟 𝑟𝑟𝑟𝑟0, the velocity distribution is the same 

as when the liquid rotates as a solid body around a 
selected axis with an angular velocity, i.e. the same 
velocity distribution as a for the Rankine vortex. 

The pressure in the vortex associated with 
centrifugal forces is defined as: 

 

𝜕𝜕𝜕𝜕 =
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌0Ω02

𝐹𝐹𝐹𝐹0
= 𝜕𝜕𝜕𝜕0 + 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌0Ω02𝜂𝜂𝜂𝜂              (6) 

 
where 𝜌𝜌𝜌𝜌 is density of the liquid. It is accepted here 
that fractal measures: volume and area can be 
represented as 

 
𝑉𝑉𝑉𝑉(𝜂𝜂𝜂𝜂) = 𝑉𝑉𝑉𝑉0 + 𝐹𝐹𝐹𝐹0 𝜂𝜂𝜂𝜂,     𝐹𝐹𝐹𝐹(𝜂𝜂𝜂𝜂) = 𝐹𝐹𝐹𝐹0 + 𝑟𝑟𝑟𝑟0∗ 𝜂𝜂𝜂𝜂,    (7)  

 
where 𝑉𝑉𝑉𝑉0, 𝐹𝐹𝐹𝐹0 and 𝑟𝑟𝑟𝑟0∗ = 𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋0 are some effective 
geometric characteristics of the vortex. 

 
Numerical implementation 
 
To solve the model equations numerically, we 

consider a qusi-2D vortex in the Rankine vortex 
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approximation. The angular velocity is defined as 
linear inside the core (𝑟𝑟𝑟𝑟 𝑟 𝑟𝑟𝑟𝑟0) 

 

𝜐𝜐𝜐𝜐𝜃𝜃𝜃𝜃 =
Γ

2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋02
𝑟𝑟𝑟𝑟, 

 
and inversely proportional outside (𝑟𝑟𝑟𝑟 > 𝑟𝑟𝑟𝑟0) 

 

𝜐𝜐𝜐𝜐𝜃𝜃𝜃𝜃 =
Γ

2𝜋𝜋𝜋𝜋𝑟𝑟𝑟𝑟
. 

 
The corresponding pressure gradient is computed 

from centrifugal balance and integrated numerically. 
Fractal perturbations are introduced by modulating 
the core radius 𝑟𝑟𝑟𝑟0(𝜃𝜃𝜃𝜃) = 𝑟𝑟𝑟𝑟0 + 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, where noise is 
random noise. Using MatLab, we implemented: a) 
1D plots of 𝜐𝜐𝜐𝜐𝜃𝜃𝜃𝜃(𝑟𝑟𝑟𝑟) and 𝜕𝜕𝜕𝜕(𝑟𝑟𝑟𝑟); b) 2D visualizations 
(quiver and contour plots) for velocity and pressure 
fields; and c) Lagrangian particle tracking to simulate 
advection a in the vortex. 

To visualize the effect of fractal distortions, we 
begin by constructing two surface geometries: (a) a 
smooth cylindrical surface with constant radius 𝑟𝑟𝑟𝑟0 (it 
is Kolmogorov-type vortex), and (b) a deformed 
surface with a radius 𝑟𝑟𝑟𝑟0(𝜃𝜃𝜃𝜃) = 𝑟𝑟𝑟𝑟0 + 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, where 
noise is white noise smoothed by convolution: 

 

𝜂𝜂𝜂𝜂(𝑑𝑑𝑑𝑑) = �𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛 sin(𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑 + 𝜙𝜙𝜙𝜙𝑛𝑛𝑛𝑛)
𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛𝑛𝑛

,   𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛~2𝑛𝑛𝑛𝑛,𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛~
1

2𝑛𝑛𝑛𝑛
. 

 
The radial displacement 𝜂𝜂𝜂𝜂(𝑑𝑑𝑑𝑑) is modeled as a sum 

of multiscale oscillations, resulting in a rough, non-
periodic vortex boundary.  

 
Results and Discussion 
 
Geometries of classical and fractal-like surfaces 

are shown in Figure 2. This illustration emphasizes 
the potential impact of small-scale deformations on 
the structure of a quasi 2D vortex.

 
 

 
a)  

b) 
 

Figure 2 – Comparison between a smooth and fractally deformed vortex surfaces. 
Fractal deformation induces surface complexity that breaks axial symmetry of the vortex boundary. 
a) classical cylindrical surface with constant radius 𝑟𝑟𝑟𝑟0, and b) vortex with a fractal deformed surface 

 
 
Velocity and pressure fields for the Rankine 

vortex model were computed using MatLab, with 
results shown in Figure 3. As expected, the angular 
velocity distribution (Fig. 3a) is linear inside the core 
(for 𝑟𝑟𝑟𝑟 < 𝑟𝑟𝑟𝑟0 = 0.1), corresponding to solid-body 
rotation, and decays as 1/r outside the core. This 

profile is essential for identifying the rotation regime 
and estimating the effective radius of self-
organization. The pressure field (Fig. 3b) decreases 
toward the center, with a maximum at the periphery, 
consistent with experimental observations of ring 
vortices reported by [23, 24]. 
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a) 

 
b) 

 
Figure 3 – Profiles of angular velocity (a) and pressure (b) in the Rankine vortex model 

 
 
Next, we introduce fractal deformations to the 

vortex surface and perform 2D visualization of the 
velocity and pressure fields. Figure 4a shows the 
quiver plot of the velocity field, while Figure 4b 
presents the pressure distribution using a contour 

plot. The domain is discretized in polar coordinates, 
with the effective core radius computed for each 
angular direction, followed by mapping to Cartesian 
space for visualization. MatLab’s built-in functions 
quiver and contour were used for these visualizations. 

 
 

 
a) 

 
b) 

 
Figure 4 – Velocity (a) and pressure (b) field under fractal perturbations. 

 Asymmetry is visible near the core 
 
 
The addition of fractal distortions introduces mild 

asymmetries, especially near the vortex core. These 
effects are similar to patterns observed in laboratory 

experiments where vortex boundaries exhibit 
undulating or irregular shapes when visualized with 
tracer particles [2]. This supports the application of 
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fractal modeling to describe microstructural features 
of coherent vortices.  

To demonstrate advective transport, we tracked 
Lagrangian trajectories of particles in the quasi-2D 
vortex field with fractal perturbations. Figure 5 
illustrates the evolution of particles (red dots) initially 
placed on a regular grid within the central domain. The 

particles are gradually drawn into curved path near the 
center, forming closed trajectories that indicate 
sustained circulation. This behavior confirms the 
presence of a coherent vortex shell, a hallmark of 
quasi-2D vortex dynamics. Similar structures have 
been documented in thin-layer flow experiments and 
numerical studies of 2D turbulence [1].

  
 

 
 

Figure 5 – Lagrangian particle trajectories in a quasi-dimensional vortex with fractal surface:  
formation of coherent, enclosed paths suggests robust vortex trapping 

 
 
Overall, the simulation results are consistent with 

experimental findings and theoretical predictions. In 
particular, the velocity and pressure profiles agree 
with experimental data from shallow-layer vortex 
studies [2]. The flow structure also reproduces key 
features described in recent studies of 2D and qusi-
2D turbulence [1, 10].  

The velocity field analysis shows deviations from 
axial symmetry due to the imposed surface 
perturbations. The streamfunction relief 
demonstrates complex topography typical of 
turbulent cores. Compared to idealized Rankine 
vortices, the fractal deformed model offers improved 
representation of surface irregularities and secondary 
flow effects. Further analysis is warranted to 
investigate the energy spectra and vorticity transport 
mechanisms within the distorted boundary layer. 

 
Conclusion 
 
In this study, a simplified Lagrangian model were 

developed for simulating quasi-two-dimensional 

vortex structures with fractal surface perturbations. 
Analytical solutions were derived based on the 
stream function-vorticity formulation, incorporating 
rotational and pressure-driven effects. The resulting 
streamfunction fields revealed localized, ring-like 
vortex structures exhibiting scale-invariant 
characteristics when modulated by logarithmically 
oscillating functions.  

Modeling performed using MatLab confirmed 
that the geometric perturbations at vortex boundaries, 
designed to mimic natural fractal deformation, 
significantly affect the internal structure and 
symmetry of the flow. These effects are particularly 
important for understanding turbulent mixing and 
energy transport in confined, rotating, or stratified 
environments such as planetary atmospheres, oceans, 
or magnetized plasmas. 

The presented approach demonstrates the 
potential of structural modeling in revealing 
important features of turbulence beyond traditional 
spectral methods. Here we focused primarily on the 
theoretical formulation and numerical verification. In 
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the future work, we plan to conduct a more detailed 
analysis of the proposed model’s potential 
applications to geophysical and plasma systems, such 
as atmospheric vortices, ocean currents, and 
magnetic plasma turbulence. In particular, the model 

can be applied to studying mesoscale vortex 
formation in the atmosphere, cyclone dynamics, and 
transport processes in thin ocean layers. It may be 
also be useful for analyzing confinement and mixing 
effects in laboratory plasma devices.
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