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Quasi-2D vortex structures in turbulent flows:
a Lagranjian model with fractal effects

Abstract. This paper presents a physically motivated model of quasi-two-dimensional vortex structures in
turbulent flows. The theory of quasi-two-dimensional turbulence explains many phenomena in geophysical
hydrodynamics, since due to the rapid rotation of the Earth, large-scale movements of the atmosphere and
ocean almost two-dimensional. Quasi-2D turbulence is approximately two-dimensional and is described by
equations containing additional terms. Such additions allow us to take into account weak three-dimensional
effects that arise in real conditions, for example, in the atmosphere or ocean. We consider the basic equations
for the velocity and pressure fields using the Lagrangian frame and incorporating centrifugal and Coriolis
forces, as well as fractal disturbances on the vortex surface. Numerical simulations implemented in MatLab
reproduce classical vortex behavior and reveal the influence of fractal corrections on field asymmetry. The
model aligns well with existing experimental data and offers a foundation for analyzing energy transport
and vortex interactions in stratified or thin-layered turbulent systems.
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elements, numerical simulations.

Introduction

Turbulent flows in natural and technical systems
often represent coherent vortex structures that display
reduced dimensionality due to geometrical
constraints or strong rotation. In particular, quasi-
two-dimensional turbulence (quasi-2D turbulence) is
characteristic of systems where motion is
predominantly planar due to strong rotation or
confinement [1-3]. Such flows arise in geophysical
contexts (the formation of mesovortices or cyclones
in the atmosphere and ocean), plasma environments,
and thin-layered fluids [4-5].

The most famous result of the theory of 2D
turbulence is conclusion that the energy cascade is
directed towards large scales and not towards small
ones (as in the 3D turbulence case) [6]. Small-scale
vortices merge into large, coherent structures in such
cases, which play a dominant role in the transport of
momentum, heat, and other physical quantities.

In contrast to ideal 2D turbulence governed by
strictly two-dimensional Navier-Stokes equations,
real quasi-2D systems are influenced by vertical
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fluctuations, stratification, and surface instabilities
[1]. This distinction is particularly important in
geophysical and plasma systems, where the
emergence of coherent vortex structures is associated
with stratification and anisotropy [5, 7]. Some studies
have highlighted the role of coherent in mesoscale
dynamics [7] and the importance of anisotropic
dissipation [2, 8]. Accurately capturing the geometry
and dynamics of such systems requires models that
account for deviations from perfect symmetry and
homogeneity. Understanding the dynamics of such
vortices, especially their geometry and interactions,
remains an open problem of both theoretical and
experimental interest.

Modern approaches to modeling quasi-2D
vortices include both numerical techniques and
simplified analytical frameworks in which the vortex
is treated as the fundamental structural unit of the
flow. Such methods are commonly employed in the
study of vortex crystal, ring vortices in thin fluid
layers, and plasma turbulence [9-14]. Existing
research has demonstrated the effectiveness of
physically based models in the study of turbulence,
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using methods from dynamical systems theory,
nonlinear physics, and synergetics [15-17].

Recent studies have introduced reduced-order
vortex models, spectral closures, and Lattice-
Boltzmann-based approaches to model quasi-2D
turbulence. However, there remains a gap in
accounting for microscale irregularities, such as
surface roughness and localized pulsations, that may
influence the internal structure of vortices. Several
works [18, 19] have shown that introducing fractal
corrections can significantly alter energy transport,
intermittency, and coherence in turbulent flows.
Moreover, earlier measurements have shown that
turbulent interfaces, isoscalar surfaces, and
dissipative structures exhibit measurable fractal
geometry, supporting the wvalidity of fractal
descriptions of turbulence [20].

While fractal models are commonly employed in
the study of chaotic dynamical systems, their
application to the microstructure of turbulent vortices
remains relatively unexplored. This work addresses
the formation and evolution of a quasi-2D vortex
bundle in a submerged viscous medium, using a
Largangian framework that incorporates inertial
forces and fractal perturbations. The core hypothesis
is that surface irregularities of a vortex filament,
modeled as scale dependent distortions, can affect the
pressure and velocity field structure. Numerical
modeling is carried in the MatLab to evaluate the
obtained field distributions and particle trajectories.
This approach is relevant from a fundamental
perspective, contributing to the understanding of self-
organization in turbulence, and for practical
applications. The model also serves as a basis for
constructing simplified turbulence closures in cases
where full 3D modeling is computationally
inefficient. The proposed model can also be applied
to several practical problems. In particular, it may
help to describe mesoscale atmospheric vortices,
cyclone dynamics, and mixing processes in thin
ocean layers.

Theoretical framework

At small scales, the turbulent flow exhibits
intermittent vortex filaments. These structures, when
spatially localized, demonstrate quasi-2D dynamics
dominated by rotation in the plane of the filament
cross-section. The predominance of rotation in one

direction is due to the stretching of vortex tubes until
the rupture, due to tendency of fixed particles of the
liquid to move away from each other, i.e., weakening
the correlations of the dynamics characteristics. This
is one of the main mechanisms for generating
turbulence [21]. Less intense, of the order of
pulsation, motion along vortex tubes must be taken
account in quasi-2D motion.

To describe the structure of quasi-2D turbulent
flows, we consider a Lagrangian approach based on
the vorticity-stream function formulation. In this
setting, the motion of vortex elements is governed by
a reduced Navier-Stokes system that incorporates
Coriolis effects, pressure gradients, and surface
geometry. This formulation is applicable to
geophysical and environmental flows where rotation,
stratification, and confinement to thin layers lead to
quasi-two-dimensional behavior.

Figure 1 schematically explains what has been
said. In cross-section 2, where the core radius of the
vortex satisfies 1y, < 791, the angular velocity g, is
greater than Qg1 (Qg, > Qg1), in accordance with the
law of conservation of angular momentum. Quasi-2D
motion implies a coupling between rotation in the xy-
plane and pulsation motion induced by the
nonstationary surface perturbation n = n(x,y,t) of
any cross-section (Fig.1).

Such behavior can be simulated using layered
ring elements with a distributed angular velocity su-
bject to inertial forces (centrifugal and Coriolis) and
internal structural restrictions. The model includes
1(0) fluctuating superficial distrurbances interpreted
as fractal corrections. The inertial forces per unit

mass are given by centrifugal ﬁc and Coriolis ﬁcor:
E =703, For=-2[Q0] (D

These forces are expressed
circulation of the vortex nucleus [y:

through the

FO = fvodro = fﬂorodr =

4T
Q f Todry = 211, (2)
0

[, is condition for stationary generation of
turbulence.
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Figure 1 — Scheme of the quasi-2D vortex filament

Ry is radius of the vortex filament, 1y, and ), are
core radii of the vortex in different cross-sections of
the filament, (1, and g, are angular velocities in
cross-sections 1 and 2, respectively, 7 is perturbation
of the vortex surface level.

Using Kelvin’s circulation theorem [22] and
accounting for viscosity via modified pressure-
density relations, we derive the governing equations:

dv— 1ap+Qz + 20 3
dt ~ par A ®
dv, v, duv,

ar 7"‘5—77@)- 4)

Eq.(3) is momentum balance and true in the
approach of a vortex ring in cylindrical symmetry.
Eq.(4) is continuity and represents mass conservation
in cylindrical coordinates. Here, the additional term
n(r) accounts for small-scale fractal perturbations to
the vortex cross-sections, effectively modifying the
divergence of the velocity field and modeling
sourface roughness or pulsational instability of the
vortex interface. This approximation allows for a
better fit of the model with experimentally observed
vortex structures in which spiral or wave-like
distortions are observed.

The distribution of velocity v, and pressure
associated with n(r) in a turbulent vortex can be

determined using these equations. A vortex with
velocity distribution is chosen as a reference system:

T
v(r) = v, -70, r = T1. (5

For r < 1y, the velocity distribution is the same
as when the liquid rotates as a solid body around a
selected axis with an angular velocity, i.e. the same
velocity distribution as a for the Rankine vortex.

The pressure in the vortex associated with
centrifugal forces is defined as:

_ p1og
p= Fy

= po + proQ§n (6)

where p is density of the liquid. It is accepted here
that fractal measures: volume and area can be
represented as

Vi =Vo+Fon, F) =F+r.n (7)

where V,, Fy and ry, = mry are some effective
geometric characteristics of the vortex.

Numerical implementation

To solve the model equations numerically, we
consider a qusi-2D vortex in the Rankine vortex
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approximation. The angular velocity is defined as
linear inside the core (r < 1)

r

Vg =—
2nrd

T,

and inversely proportional outside (r > 1)

The corresponding pressure gradient is computed
from centrifugal balance and integrated numerically.
Fractal perturbations are introduced by modulating
the core radius ry(6) = ry + noise, where noise is
random noise. Using MatLab, we implemented: a)
1D plots of vg(r) and p(r); b) 2D visualizations
(quiver and contour plots) for velocity and pressure
fields; and c¢) Lagrangian particle tracking to simulate
advection a in the vortex.

To visualize the effect of fractal distortions, we
begin by constructing two surface geometries: (a) a
smooth cylindrical surface with constant radius 7, (it
is Kolmogorov-type vortex), and (b) a deformed
surface with a radius ry(0) = 1y + noise, where
noise is white noise smoothed by convolution:

N

1
n(z) = Z ay, sin(k,z + ¢,), k,~2™, T
n=1
The radial displacement 17(z) is modeled as a sum
of multiscale oscillations, resulting in a rough, non-
periodic vortex boundary.

Results and Discussion

Geometries of classical and fractal-like surfaces
are shown in Figure 2. This illustration emphasizes
the potential impact of small-scale deformations on
the structure of a quasi 2D vortex.

Figure 2 — Comparison between a smooth and fractally deformed vortex surfaces.
Fractal deformation induces surface complexity that breaks axial symmetry of the vortex boundary.
a) classical cylindrical surface with constant radius 7y, and b) vortex with a fractal deformed surface

Velocity and pressure fields for the Rankine
vortex model were computed using MatLab, with
results shown in Figure 3. As expected, the angular
velocity distribution (Fig. 3a) is linear inside the core
(for r <1y =0.1), corresponding to solid-body
rotation, and decays as 1/r outside the core. This

profile is essential for identifying the rotation regime
and estimating the effective radius of self-
organization. The pressure field (Fig. 3b) decreases
toward the center, with a maximum at the periphery,
consistent with experimental observations of ring
vortices reported by [23, 24].
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Figure 3 — Profiles of angular velocity (a) and pressure (b) in the Rankine vortex model

Next, we introduce fractal deformations to the  plot. The domain is discretized in polar coordinates,
vortex surface and perform 2D visualization of the  with the effective core radius computed for each
velocity and pressure fields. Figure 4a shows the  angular direction, followed by mapping to Cartesian
quiver plot of the velocity field, while Figure 4b  space for visualization. MatLab’s built-in functions
presents the pressure distribution using a contour  quiver and contour were used for these visualizations.
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Figure 4 — Velocity (a) and pressure (b) field under fractal perturbations.
Asymmetry is visible near the core

The addition of fractal distortions introduces mild ~ experiments where vortex boundaries exhibit
asymmetries, especially near the vortex core. These  undulating or irregular shapes when visualized with
effects are similar to patterns observed in laboratory  tracer particles [2]. This supports the application of
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fractal modeling to describe microstructural features
of coherent vortices.

To demonstrate advective transport, we tracked
Lagrangian trajectories of particles in the quasi-2D
vortex field with fractal perturbations. Figure 5
illustrates the evolution of particles (red dots) initially
placed on a regular grid within the central domain. The

05

particles are gradually drawn into curved path near the
center, forming closed trajectories that indicate
sustained circulation. This behavior confirms the
presence of a coherent vortex shell, a hallmark of
quasi-2D vortex dynamics. Similar structures have
been documented in thin-layer flow experiments and
numerical studies of 2D turbulence [1].
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Figure 5 — Lagrangian particle trajectories in a quasi-dimensional vortex with fractal surface:
formation of coherent, enclosed paths suggests robust vortex trapping

Overall, the simulation results are consistent with
experimental findings and theoretical predictions. In
particular, the velocity and pressure profiles agree
with experimental data from shallow-layer vortex
studies [2]. The flow structure also reproduces key
features described in recent studies of 2D and qusi-
2D turbulence [1, 10].

The velocity field analysis shows deviations from

axial symmetry due to the imposed surface
perturbations. The streamfunction relief
demonstrates complex topography typical of

turbulent cores. Compared to idealized Rankine
vortices, the fractal deformed model offers improved
representation of surface irregularities and secondary
flow effects. Further analysis is warranted to
investigate the energy spectra and vorticity transport
mechanisms within the distorted boundary layer.

Conclusion

In this study, a simplified Lagrangian model were
developed for simulating quasi-two-dimensional

vortex structures with fractal surface perturbations.
Analytical solutions were derived based on the
stream function-vorticity formulation, incorporating
rotational and pressure-driven effects. The resulting
streamfunction fields revealed localized, ring-like
vortex  structures  exhibiting  scale-invariant
characteristics when modulated by logarithmically
oscillating functions.

Modeling performed using MatLab confirmed
that the geometric perturbations at vortex boundaries,
designed to mimic natural fractal deformation,
significantly affect the internal structure and
symmetry of the flow. These effects are particularly
important for understanding turbulent mixing and
energy transport in confined, rotating, or stratified
environments such as planetary atmospheres, oceans,
or magnetized plasmas.

The presented approach demonstrates the
potential of structural modeling in revealing
important features of turbulence beyond traditional
spectral methods. Here we focused primarily on the
theoretical formulation and numerical verification. In
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the future work, we plan to conduct a more detailed
analysis of the proposed model’s potential
applications to geophysical and plasma systems, such
as atmospheric vortices, ocean currents, and
magnetic plasma turbulence. In particular, the model

can be applied to studying mesoscale vortex
formation in the atmosphere, cyclone dynamics, and
transport processes in thin ocean layers. It may be
also be useful for analyzing confinement and mixing
effects in laboratory plasma devices.
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