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An example on existence of a  0

2n -computable family  
of total functions whose rogers semilattice contains an ideal without minimal elements 

 
 

Abstract. We study computable families of total functions of any level of the Kleene-Mostowski 
hierarchy above level 1 and try to find elementary properties of the Rogers semilattices that are different 
from the properties of the classical Rogers semilattices for families of computable functions. It is known 
that on first level of the arithmetical hierarchy the Rogers semilattice of any computable family of total 
functions contains no ideal without minimal elements, [1]. In this article we show an example how to 
build 0

2n -computable family of total functions whose Rogers semilattice contains an ideal without 
minimal elements, n . 
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Introduction 
 
We refer the reader to [1, 2, 3] for the standard 

notions and notations in algorithm theory and in 
numbering theory. 

Let F  be a 0
2n -computable family of total 

functions, where n . A numbering F :  is 
called 0

2n -computable if the binary function 

))(( xn  is 0
2n -computable, which means that the 

function ))(( xn  is computable relative to the 

oracle )1(0  n , (see [4, 5]). A family F is called 0
2n

-computable if it has an 0
2n -computable 

numbering. The notion of a 0
1 -computable 

numbering coincides with the classical notion of a 
computable numbering of a family of computably 
enumerable sets in [1]. Let )(0

2 FComn  be the set of 

all 0
2n -computable numberings of a family F. If α 

and β are two numberings of a same family F , then 
we say that the numbering α is reducible to the 

numbering β, if there is a computable function f 
such that α = β f, and we write this symbolically as 

  . If    and    then the numberings   
and β are called equivalent, written as   . 
Denote by )deg(  the degree of α, i.e. the set 

}|{    of numberings. The reducibility relation 
of numberings is a pre-order relation on )(0

2 FComn , 
and it induces a partial order relation on a set of 
degrees of the numberings in )(0

2 FComn , which is 
usually also denoted by  . The partially ordered set 

  )},(|){deg()( 0
2

0
2 FComF ndefn   is an 

upper semilattice and called the Rogers semilattice 
of the family F, [5]. 

A numbering α of a family F is called minimal if 
for any numbering β of F, reducibility of β to α 
implies that α is reducible to β. The numerical 
equivalence   of a numbering α is defined as 
follows: )}()(|),{( yxyxdef   .  

An equivalence relation   is said to be positive 
if   is computably enumerable. Denote by ][W  
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the set of all numbers, which are  -equivalent to 
some element from W. For the further undefined 
notions, which are related to relativized computable 
numberings we refer to [4, 5, 6]. 

 
Results 
 
It is well known many infinite families of c.e. sets 

whose Rogers semilattice contains an ideal without 
minimal elements, for instance, the family of all c.e. 
sets, [1]. Moreover, there exists a computable family 
of c.e. sets whose Rogers semilattice has no minimal 
elements at all, [7, 8]. In opposite to the case of the 
families of c.e. sets, for every computable numbering 
α of an infinite family F of computable functions, 
there is a Friedberg numbering of F which is 
reducible to α, [1]. This means that the Rogers 
semilattice of any computable family of total 
functions from level 1 of the arithmetical hierarchy 
contains no ideal without minimal elements. 

In [7] Badaev proved the criterion for 
numberings to be minimal: 

Theorem 1. ([4]). Let S :  be a 
numbering of an arbitrary set S. Then the following 
statements are equivalent: 

a)   is a minimal numbering; 
b) for any c.e. set W  such that 



][W , there exists a positive equivalence 

relation    such that  ][W . 
And, this result was extended in [9] up to a 

criterion for a numbering not bounded any minimal 
numbering: 

Theorem 2. ([9]). Let α be a numbering of an 
arbitrary set S. Then S has a minimal numbering, 

which is reducible to α if and only if there exists a 
c.e. set W such that 

a) α(W) = S and 
b) for any c.e. set WV   where α(V) = S there 

is a positive equivalence relation   such that   
restricted on W is a subset of   and ][VW  hold.  

Indeed theorem 2 is a corollary of theorem 1, 
andwe just reformulate theorem 2: 

Theorem 3. Let α be a numbering of an 
arbitrary set S. Then there is no minimal numbering 
of S that is reducible to α if and only if, for every 
c.e. set W, if α(W) = S then there exists a c.e. set V 
such that α(V) = S and, for every positive 
equivalence  , either   restricted on W is not a 
subset of   or ][VW  . 

These criteria (theorem 1-3) hold for 
numberings of any set, not only for numberings of 
families of total functions. The next theorem is 
based on theorem 3 and relates to [10]. It is an 
example of a 0

2n -computable family whose 
Rogers semilattice contains an ideal without 
minimal elements. Before formulating theorem 4, 
we note that every Rogers semilattice of a 0

2 n -
computable family F contains the least element if F 
is finite, [1], and infinitely many minimal elements, 
otherwise, [5]. 

Theorem 4. For every n , there exists a 
0

2 n -computable family of total functions whose 
Rogers semilattice contains an ideal without 
minimal elements. 

Proof. By theorem 3 it is clear that it is enough 
to construct numbering α of 0

2 n -computable 
family which satisfy the following condition:  
 
 

  )][|()()()()( \
jiiijjiiiii VWWVWVWW   , (1) 

 
where Wi and Vi are c.e. sets, j  is a positive 
equivalence.  

Construction of α: 
Our 0

2 n -computable family will consist of 
constant functions and functions, which differ from 
constant functions exactly on one point.  

On stage i, we ask oracle '0  about belonging of 
elements α and b to Wi, where we denote α = 2 < i ,j 
>   and b = 2 < i, j > +1 for any j = 0, 1, 2, …: 

If ii WbWa   for some j , then we put 
α(a)(0)=i+1,α(a)(s+1)=i, , for ,2,1,0s ; 

α(b)(0)=i+1,α(b)(s+1)=i, for ,2,1,0s ; 
If ii WbWa   for some j , then we put 

isa ))(( , for ,2,1,0s ; 
α(b)(0)=i+1,α(b)(s+1)=i, for ,2,1,0s ; 
If ii WbWa   for some j , then we put 

α(a)(0)=i+1,α(a)(s+1)=i, for ,2,1,0s ; 
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isb ))(( , for ,2,1,0s ; 
And finally, if ii WbWa  , then we 

construct )(a  and )(b  step by step: 
Step 0, we put iaa  )1)(()0)((   and 

ib )0)((  (indeed, )(b  will be constructed like 
)(a , but little bit slowly). 

Step 1s , on this step we know that 
isaaa  )1)(()1)(()0)((    and we 

know the values of  
 

))((,),1)((),0)(( sbbb   .            (2) 
 
If in (2) there is the value 1i , then we put 

isbsa  )1)(()2)((  ; 
If in (2) there is no value 1i , then we check 

the following condition: 1),(  s
jba  ? 

if “yes”, then isa  )2)((  and 
1)1)((  isb , 

if “no”, then isbsa  )1)(()2)((  . 
We put 

iii VWV


\ , where { |iV x x 


2 , , 1 2 , 1, 0}i j j or x i j j          – compu-
table set, then the condition (1) is holds for 
numbering  .  

Checking:  
If for some j  (with fixed i ) one of a orb  

doesn’t belong to iW , then )()(  iW ; 
If for any j , a  and b  belong to iW , then we 

have two cases. 
1. jba ),(  for some j , then by 

construction )()( ba   , i.e.  ij W\| . 

2. jba ),(  for any j , then by construction 
))(())(( xbxa    for any x  and there is only 

one index-number α = 2 < i ,0 > of function 
isa ))((  in iV , what means that the 

corresponding iWib  10,2 , but 

jeiVib ][10,2  , i.e. 
jii VW ][ . 

 
 
 
 
 
 
 

Conclusion 
 
It is the next step in studying the generalized 

computable families of total functions and their 
generalized computable numberings. Constructed 
example of 0

2n -computable family of total 
functions whose Rogers semilattice contains an 
ideal without minimal elements, where n ,  
shows that the elementary properties of the 
corresponding Rogers semilattices are very rich. 
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