International Journal of Mathematics and Physics 16, Ne2 (2025)

IRSTI 29.19.00

https://doi.org/10.26577/ijmph.20251624

V.V. Kidalov"? @ , S.V. Simchenko? @ ,A.F. Dyadenchuk?®* @ ,
V.A. Baturin* ® , 0.Yu. Karpenko*

"Experimentelle Physik 2, Technische Universitit Dortmund, Dortmund, Germany
’Dmytro Motornyi Tavria State Agrotechnological University, Melitopol, Ukraine
3State University of Information and Communication Technologies, Kyiv, Ukraine
“Institute of Applied Physics, National Academy of Sciences of Ukraine, Sumy, Ukraine
*e-mail: alena.dyadenchuk@tsatu.edu.ua
(Received 29 June 2025; revised 16 November 2025; accepted 21 November 2025)

Comprehensive Structural and Stress Analysis
of ZnO/SiC/porous-Si/Si Multilayer Heterostructures Synthesized
Via Sequential Deposition Techniques

Abstract. This research explores the fabrication and structural characteristics of ZnO/SiC/porous-Si/Si
multilayer heterostructures synthesized through a controlled multi-step deposition process. The study
combines electrochemical porosification of monocrystalline Si substrates, solid-phase epitaxial growth of
silicon carbide films, and magnetron sputtering of ZnO layers under varied oxygen partial pressures. Two
samples of ZnO films were synthesized under distinct oxygen atmospheres: 0.06 Pa and 0.1 Pa. Compara-
tive XRD analysis reveals that films deposited at lower pressure (0.06 Pa) exhibit enhanced crystallinity,
indicated by reduced peak broadening and distinct polycrystalline features. Residual stress analysis con-
firms compressive biaxial stress in both samples (—0.511 GPa and —0.287 GPa), indicating high crystal-
line quality and structural integrity of the ZnO films. These findings highlight the effectiveness of buffer
layering and deposition control for optimizing ZnO film properties on complex silicon-based architectures.
Keywords: ZnO thin film, porous silicon, silicon carbide, heterostructure, residual stress, structural char-

acterization, X-ray diffraction.

Introduction

Zinc oxide (ZnO) is a [I-VI semiconductor with
a wide band gap (~3.3 eV) and high exciton binding
energy (~60 meV), which makes it effective in pho-
tonics, sensors, and optoelectronics. Thin films and
nanostructures of ZnO are effectively utilized as lu-
minescent materials, transparent electrodes, sensitive
layers in gas and biosensors, catalysts, and detectors
of ultraviolet, X-ray, and gamma radiation.

However, the morphology, structure, and perfor-
mance characteristics of ZnO depend significantly on
the conditions and technology used in its synthesis. In
particular, the choice of substrate plays a critical role,
considerably affecting the quality of epitaxial ZnO
films and the parameters of the resulting devices.

Zn0O-based film materials are actively used in op-
toelectronics, in particular as transparent electrodes,
in sensor devices, phosphors and photodetectors sen-
sitive to UV, X-ray and gamma radiation, as well as
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in gas analysis systems [1-3]. The quality of ZnO
film depends largely on the substrate parameters and
deposition method. Traditionally, sapphire Al,Os
and silicon Si substrates are used for ZnO growth [4,
5]. While sapphire ensures high crystalline quality,
its dielectric properties limit the efficiency of elec-
tronic devices based on ZnO/Al,Os structures. A vi-
able alternative is the ZnO/Si heterostructure, which
is more compatible with microelectronic technology.
Despite the promising nature of the ZnO/Si system,
the difference in lattice parameters and thermal ex-
pansion leads to the formation of mechanical stresses
and defects at the interface. Works [6-8] have shown
that the characteristics of the ZnO crystal structure
depend significantly on the deposition conditions,
including temperature, partial pressure of oxygen,
source power, and process duration. Optimization of
these parameters allows for a reduction of the dislo-
cation density, grain size, and residual stresses in the
films. The authors of [9, 10] note that the presence of
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a buffer layer provides the most effective reduction
of stress in ZnO films.

The pore morphology of porous silicon not only
facilitates stress relaxation but also significantly in-
fluences the adhesion of subsequent layers, includ-
ing ZnO. Studies have shown that pore size, distri-
bution, and surface roughness affect nucleation and
bonding strength at the ZnO/porous-Si interface,
thereby impacting film uniformity and epitaxial
quality [11-13].

Porous silicon partially relieves mechanical stress
due to its elastic structure, but high-temperature ZnO
deposition in oxygen atmosphere causes surface oxi-
dation and hampers epitaxial growth [14, 15]. One
promising solution is the use of buffer layers, particu-
larly a layer of silicon carbide (SiC) [16, 17], which
provides better resistance to high-temperature pro-
cessing. Silicon carbide is a wide-gap semiconduc-
tor (Eg:2.3-3.3 eV depending on the polymorph) that
has high thermal conductivity, chemical and thermal
stability, and resistance to aggressive environments
[18, 19]. Its thermal expansion coefficient (~4.0x107®
K™) is closer to the value for ZnO, which allows for
a significant reduction in thermomechanical stresses
in the heterostructure [20].

Despite these advances, the combined influence
of porous substrates, SiC buffer layers, and deposi-
tion parameters on defect formation, residual stress,
and structural properties of ZnO films in ZnO/SiC/
porous-Si/Si heterostructures remains insufficiently
understood. A deeper understanding of these interde-
pendencies is essential for improving the reliability

of heterojunctions in sensors, optoelectronics, and
next-generation energy devices.

Solid-state epitaxy enables the deposition of
high-quality SiC films compatible with silicon sub-
strates. This compatibility is especially enhanced
when a mesoporous structure is pre-formed on the
silicon surface [21-23]. Compressive biaxial stresses,
which are often found in such structures, can be re-
duced by using a porous layer and a SiC buffer layer
acting as a damping interface [23, 24].

In this regard, it is of great importance to analyze
how the combination of a porous substrate, a SiC
bufter layer, and deposition modes affects defect for-
mation, residual stresses, and structural properties of
ZnO films in the ZnO/SiC/porous-Si/Si heterostruc-
ture. This will allow improving the technologies for
creating reliable heterojunctions for sensors, opto-
electronics, and new generation energy devices.

This work aims to study the defects arising dur-
ing the formation of zinc oxide heterostructures on
SiC/Si substrates with a pre-deposited system of
mesopores.

Materials and Methods

The conditions for obtaining zinc oxide films on
silicon substrates with previously deposited layers of
silicon carbide and porous silicon are described in
detail in [25]. The sequence of technological stages
is shown in Fig. 1. As a result, two types of samples
were obtained, differing in the conditions of ZnO
film deposition, as described in [26].

Sample 1:
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Figure 1 — Sequence of processes for manufacturing ZnO/SiC/porous-Si/Si heterostructure

The article presents the results of the study
of samples using scanning electron microscopy
(Tescan Mira 3 LMU and Zeiss Supra 25), Raman
spectroscopy (Raman) and X-ray diffraction (Phil-
ips X’Pert PRO — MRD). The diffraction patterns
were obtained in sliding geometry with a scanning

step of 0.03° and an accumulation time of 1.5 s
per point. Phase identification was carried out us-
ing the ICDD database. The structure of SiC films
was studied on an EMR-100 electron microscope
in the «reflection» mode at an accelerating voltage
of 75 kV.
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Results and Discussion

After the process of electrochemical etching, the sili-
con substrates were completely covered with pores (Fig.
2, a). After annealing in the furnace, silicon with all its
numerous pores is covered with a SiC film (Fig. 2, b).

The EDAX energy dispersive X-ray spectrum
confirms the presence of elements Si (50.1%) and
C (49.3%) and a small amount of O (0.6%) on the
sample’s surface (Fig. 2, b).

These SEM images confirm the successful for-
mation of a porous silicon layer and its subsequent
coverage with a uniform SiC film. The absence of
surface defects suggests good compatibility between
the porous substrate and the SiC layer.

17.27 nm,_
11.87 nm_

a

In the presence of a nanoporous layer, carbon
monoxide penetrates to the depth of this layer.
At the same time, silicon atoms are replaced by
carbon atoms in the columns of nanoporous sili-
con, and a SiC molecule and a silicon vacancy are
formed. The porous layer turns into a SiC film,
under which pores form due to silicon vacancies
(Fig. 3).

Fig. 3 schematically illustrates this transforma-
tion process. It shows how carbon atoms substitute
silicon atoms within the porous matrix, leading to the
formation of a continuous SiC layer. The model also
explains the emergence of subsurface voids beneath
the SiC film, which contributes to stress relaxation in
the heterostructure.
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Figure 2 — Surface morphology of porous Si (a) and SiC film (b), observed using SEM

Figure 3 — Model depicting the formation stages
of the ZnO/SiC/porous-Si/Si heterostructure

Correct selection of the thickness of the porous-
Si layer allows setting the appropriate thickness of
the silicon carbide film. At the same time, the pores
under the SiC film contribute to reducing mechanical
stress in the material.

Fig. 4 displays the electron diffraction pattern
from the (100) surface of SiC/Si films along the
[110] direction. Spot reflections confirm epitaxial

SiC growth on silicon. The film surface is smooth,
without signs of twinning or polycrystalline rings,
and the presence of Kikuchi lines confirms its high
crystalline quality and epitaxial nature.

The presence of Kikuchi lines and sharp
diffraction spots indicates epitaxial growth of SiC
on the porous-Si/Si substrate, confirming high
crystalline quality.
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ZnO layer formed via magnetron sputtering, con-
firmed by SEM in Fig. 5.

The cross-sectional images reveal uniform ZnO
coverage and distinct layer interfaces. Sample 1 (Fig.
1, a) shows a denser and more continuous ZnO lay-
er, consistent with its higher crystallinity and lower
stress.

Fig. 6 shows the XRD patterns of ZnO films for
sample 2 and sample 1. In sample 2, a diffraction
peak is observed at 34.37° with an FWHM of 0.731°,
whereas sample 1 exhibits a peak at 34.40° with a
narrower FWHM of 0.582°. The presence of a triplet
within 31-36° in sample 1 confirms the polycrystal-
line hexagonal phase of ZnO [6].

Figure 4 — Electrogram from the surface of the SiC layer
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Figure 5 — Cross-sectional SEM images of the ZnO/SiC/porous-Si/Si heterostructure:

(a) sample 1, (b) sample 2
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Figure 6 — XRD patterns of ZnO/SiC/porous-Si/Si samples:
(a) sample 1 and (b) sample 2

The triplet observed in sample 1 (Fig. 6,a) con-
firms the presence of a polycrystalline hexagonal
ZnO phase. The shift in peak position and narrowing
of FWHM further support improved structural order-
ing under reduced oxygen pressure.

X-ray diffraction analysis confirms the nanocrys-
talline structure of ZnO films. The average crystal-
lite size was estimated from the broadening of the

(002) diffraction peak using the Scherrer approach,
as described in [7, 26, 27]. The lattice parameter © is
calculated from the equation in [28].

Strain and dislocation density were additionally
assessed based on peak profile analysis following the
methodology reported in [27, 29].

Table 1 shows the results of calculations of the
parameters of ZnO films.
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Table 1 — Structural parameters of the ZnO films

Parameter Value
Sample 1 Sample 2
B, (°) 0.731 0.582
26 (°) 34.37 34.405
a, nm 0.31955 0.31924
c, nm 0.52183 0.52113
d, nm 0.261 0.261
L, nm 0.195 0.195
Grain size, nm (XRD) 11.89 14.94
ex107 2.63 2.09
8x10" 1/nm? 0.0064 0.00403
o, GPa -0.511 -0.287

The improved crystallinity of ZnO films depos-
ited at 0.06 Pa can be attributed to enhanced adatom
mobility under reduced oxygen partial pressure,
which promotes more ordered crystal growth and re-
duces defect density. This is reflected in the narrower
XRD peak and larger crystallite size observed in
sample 1. The presence of the SiC buffer layer plays
a critical role in stabilizing the ZnO (002) texture by
mitigating lattice mismatch and thermal expansion
differences between ZnO and the silicon substrate.
Furthermore, a clear inverse correlation is observed
between crystallite size and residual stress: sample 1,
with larger crystallites, exhibits lower compressive
stress (—0.287 GPa), suggesting that grain coarsening
contributes to stress relaxation in the film.

Negative residual stress values confirm biaxial
compressive stress in the structure. The relatively low
magnitude of this stress suggests that the obtained
ZnO films are of high structural quality. The obtained
crystallite size (14.94 nm) and low compressive
stress (—0.287 GPa) in sample 1 compare favorably
with values reported in earlier studies. For instance,
Bouzouraa et al. [16] demonstrated that increasing
the porosity of silicon substrates improves ZnO adhe-
sion but does not fully eliminate residual stress, with

grain sizes remaining below 12 nm. The presence of
buffer layers contributes to the reduction of residual
stresses in the ZnO film compared to Al,O; [5] and
Si [30] substrates. Nakamura et al. [13] showed that
introducing buffer layers significantly enhances crys-
tallinity and reduces stress in ZnO films grown on
silicon, although their work focused on planar Si
substrates without porosity. Our results extend these
findings by showing that the combination of porous-
Si and a SiC buffer layer leads to larger crystallites
and lower stress. Moreover, the pronounced (002)
texture observed in our films is consistent with the
results of Ting et al. [10], who reported that buffer
layers promote preferential orientation. Notably, our
multilayer architecture achieves these improvements
under reduced oxygen pressure, suggesting a syner-
gistic effect of substrate engineering and deposition
control.

Conclusion

A comprehensive analysis of ZnO/SiC/porous-
Si/Si heterostructures demonstrated the influence of
multilayer engineering and deposition parameters on
crystallinity and stress levels in ZnO films. The use
of porous silicon combined with a SiC buffer layer
allowed for a gradual relaxation of lattice mismatch-
induced stresses, contributing to uniform film mor-
phology and improved crystalline quality. XRD data
confirmed the presence of a stable hexagonal phase,
and structural parameters such as dislocation den-
sity and strain varied depending on oxygen pressure
during ZnO sputtering. The methodology offers a
promising route toward fabricating stress-resilient,
high-quality ZnO-based heterostructures suitable for
sensing and optoelectronic applications.
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