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Abstract. In the referenced study, a differential equation (DE) exhibiting a hybrid structure is examined. The 
principal objective of this manuscript is to determine the feasibility of substituting the given supplementary 
boundary conditions with alternative equivalent conditions. This is achieved through the establishment and proof 
of four theorems, providing a rigorous foundation for the proposed substitutions. Incipiently, the existing (3) 
conditions are considered in a nonhomogeneous context. Subsequently, new conditions, denoted as (7), are in-
troduced. These newly formulated conditions are demonstrated to be equivalent to the original ones, ensuring the 
unique solvability of the hybrid-structured system labeled as (1). The system under consideration is characterized 
as hybrid due to the presence of both unknown ( )y x  and algebraic components. This dual nature necessitates 
a nuanced approach to boundary condition formulation and analysis. The methodology employed in this study 
underscores the importance of flexibility in boundary condition specification, particularly in complex or hybrid 
configurations. By establishing the equivalence of different boundary conditions, article provides valuable in-
sights into the solvability and analysis of such frameworks. Furthermore, the study meticulously details prior 
research in this domain, delineating the specific conditions and configurations previously explored. This compre-
hensive review situates the current manuscript within the broader context of hybrid DE analysis.
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Differential-algebraic equations with boundary terms

Abstract. In the referenced study, a differential equation (DE) exhibiting a hybrid structure is examined. The 
principal objective of this manuscript is to determine the feasibility of substituting the given supplementary boundary
conditions with alternative equivalent conditions. This is achieved through the establishment and proof of four theorems,
providing a rigorous foundation for the proposed substitutions. Incipiently, the existing (3) conditions are considered in
a nonhomogeneous context. Subsequently, new conditions, denoted as (7), are introduced. These newly formulated
conditions are demonstrated to be equivalent to the original ones, ensuring the unique solvability of the hybrid-structured
system labeled as (1). The system under consideration is characterized as hybrid due to the presence of both unknown

( )y x and algebraic components. This dual nature necessitates a nuanced approach to boundary condition formulation 
and analysis. The methodology employed in this study underscores the importance of flexibility in boundary condition
specification, particularly in complex or hybrid configurations. By establishing the equivalence of different boundary
conditions, article provides valuable insights into the solvability and analysis of such frameworks. Furthermore, the study 
meticulously details prior research in this domain, delineating the specific conditions and configurations previously 
explored. This comprehensive review situates the current manuscript within the broader context of hybrid DE analysis.
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Introduction 

The term differential-algebraic equation (DAE) 
was first introduced in the title of a 1971 publication 
by Gear [1], and that same year marked the release of 
his seminal monograph [2], wherein he explores 
examples arising from the analysis of electrical 
circuits. Two principal domains of application–
namely, circuit analysis and mechanical frameworks 
with conditions–have remained among the primary 
driving forces behind the advancement of the theory 
of DAEs. Even today, more than 150 years after 
Kirchhoff's foundational contributions, circuit 
analysis continues to serve as a significant impetus 
for the development of DAEs. In this context, the 
interplay between modeling and mathematical 
analysis is of particular importance. Readers seeking 
a more comprehensive understanding are referred to 
the foundational literature [3]. Between 1989 and 
1996, the field of DAE theory and its numerical 
treatment experienced a period of rapid growth, 
during which numerous research groups in both 

mathematics and engineering began to engage with 
this emerging area of inquiry. Those interested in 
delving deeper into the subject and the extensive 
body of manuscript accumulated over the years may 
consult the monographs [4]–[8] as well as the review 
article [9]. During the formative years of DAE 
research, regularization emerged as a widely 
employed technique for transforming the algebraic 
components into DEs. Motivated by physical 
scenarios such as stiff springs or parasitic phenomena 
in electrical circuits, a number of researchers pursued 
investigations in this direction. Another fruitful 
avenue of study involves commencing with a 
singularly perturbed ordinary DE, discretizing it, and 
subsequently analyzing the asymptotic behavior of its 
exact solutions in the limiting case. In 2006, 
Mehrmann published a volume [10] that offered fresh 
insights into several pertinent topics, including 
boundary value problems (BVP) for differential-
algebraic equations.  

The domain of DEs subject to boundary 
conditions–commonly referred to as boundary-DEs–
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has been extensively surveyed from the early 20th 
century to the present day, with particular emphasis 
on recent developments. Among the earliest 
contributors in this field was R. Phillips, who 
engaged directly with boundary-differential 
operators. His investigations provided a rigorous 
conceptual framework for understanding the 
structural nature of such equations. Specifically, he 
explored methodologies involving minimal and 
maximal operators, as well as their dissipative 
extensions–an approach that is intrinsically linked to 
the formulation of boundary DEs. In his seminal 
scrutiny [11], examined maximally dissipative 
operators, thereby underscoring the necessity of 
extending purely differential operators to encompass 
boundary-differential formulations. This realization 
highlights the fact that, in numerous cases, 
differential operators naturally evolve into boundary-
differential operators–i.e., operators that incorporate 
both differential components and boundary-defined 
terms. Further contributions, such as those in [12], 
consider formulations that involve not only 
differential expressions but also boundary 
functionals that explicitly depend on the boundary 
values of the solution. Boundary value problems 
form an important area of applied mathematics for 
explicitly given ordinary differential equations; see, 
for example, [13-16]. The study of the properties of 

singular perturbations of some differential operators 
and well-defined restrictions is devoted to the works 
[17, 18]. This assertion is even more applicable in the 
context of differential-algebraic equations (DAEs). 
The studies [19-25] predominantly focus on BVPs 
involving conditions prescribed at two distinct 
boundary spots. These investigations play a pivotal 
role in advancing the theoretical understanding and 
computational treatment of DAEs under boundary 
conditions. 

The present study is devoted to the analysis of 
boundary DEs incorporating algebraic components 
on a finite interval, representing a hybrid structure 
that combines DAEs with boundary terms. The first 
part provides a comprehensive classification of all 
possible linear, well-posed problems within this 
framework. In the second part, inverse problems 
corresponding to the aforementioned class of linear, 
well-posed boundary-DEs with algebraic 
components on a finite domain are formulated and 
examined. 

Let us consider a regimen composed of a 
boundary DE involving algebraic components on a 
finite interval with respect to the unknown function 

( )y x , together with an associated regimen of linear 
algebraic equations for the scalar parameters 

1, , sµ µ . 
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kr C k∈ =  

Let }{ 1( ), , ( )kh h⋅ ⋅  and }{ 1( ), , ( )sq q⋅ ⋅  

denote prescribed collections of functions. Particular 
attention must be given to the specification of the 
boundary functionals 1( ), , ( )kU U⋅ ⋅ .  

In the case where the functions 

}{ 1 1( ), , ( ); ( ), , ( )k sh h q q⋅ ⋅ ⋅ ⋅   exhibit 

smoothness in neighborhoods of the 0x =  and 
1x = , the 1( ), , ( )kU U⋅ ⋅  may be expressed in the 
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where ,ij ijα β  are complex coefficients. We now augment the regimen of equations (1) by 
incorporating with an augmented set of admissibility 
conditions:

 

1 1 1 1 1

2 2 2 2 2

(1) (0)( , ) (1) (0) 0,

(1) (0)( , ) (1) (0) 0,

dy dyV y y y
dx dx
dy dyV y y y

dx dx

µ α β γ δ

µ α β γ δ

 = + + + =

 = + + + =






                           (3) 

 
Within the present analytical framework, the 

coefficient matrix associated with the end spot 
operator 

1 1 1 1

2 2 2 2

α β γ δ
α β γ δ
 

Γ =  
 

 

 
is assumed to attain full rank equal to two, thereby 
ensuring the non-degeneracy of the corresponding 
endpoint operator and the linear independence of the 
associated endpoint conditions in the admissible 
specification space. The principal objective 
addressed in the present manuscript may be 
formulated as follows: 

Are there any additional specifications, apart 
from those specified in (3), that ensure the regimen 
of equations (1) with these supplementary 

specifications admits a uniqueу solution for all 
2 1( ) (0,1), , , sf x L ω ω∈ ∈ ∈   ? Provide the 

general form of such an augmented set of 
admissibility conditions. 

The problem at hand, in the context of DEs, is 
well-established in the [26]. 

In this section, we will introduce our salient 
notables. 

Theorem 1. Assume that 
0

det 0
A

C
 

∆ = ≠ 
 

. 

Under this non-degeneracy condition the (1), (3) is 
uniquely solvable for all right-hand sides 

2 1( ) (0,1), , , sf x L ω ω∈ ∈ ∈   . Then, the 
solution to the problem (1), (3) is given by the 
formula: 
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The entities denoted by 1 2, ,m mH H ( ) ,s i mH +  
;jmH  1 2 3 4, , ,A A A A  constitute a collection of  

 

determinant expressions, the explicit constructions of 
which are expounded in Appendix 1. 
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It is pertinent to observe that the matrix A  is 

induced by the DE, whereas the matrix 0C  is a 
consequence of the boundary conditions. The 

constituent entries of this 
0

A
C
 
 
 

 are meticulously 

expounded in Appendix 2. 
Within the framework of the problem delineated 

by (1) and (3), the boundary conditions articulated in 

(3) are characterized by homogeneity. Let us examine 
the scenario in which the supplementary conditions 
(3) are non-homogeneous as well. 

Theorem 2. Provided that 
0

det 0,
A

C
 

∆ = ≠ 
 

 

then for any vectors p


 and for all 

2 1( ) (0,1), , , sf x L ω ω∈ ∈ ∈   , the (1) with 
non-homogeneous supplementary conditions 
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admits a unique solution in the form: 
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The entities denoted by 01 02 10, , ,H H H

20 ( )2 ( )3 2 3, , , ,s i s i j jH H H H H+ +  constitute a 
collection of determinant expressions, the explicit 

constructions of which are expounded in Appendix 3.
0

0 ( ), jy x µ  are identified as a solution to the problem 
encoded by the (1), (3). 
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Henceforth, we shall demonstrate how the 
solution to the dilemma hitherto propounded may 
be deduced from Theorem 2. To this end, it suffices 
to postulate that the p



 exhibits linearly and conti-
nuously dependence with respect to the prescribed 
collection { }2 1( ) (0,1), , , sf x L ω ω∈ ∈ ∈   . 

Stated otherwise, the components of the p


 
manifest as linear continuous functionals on the 
space 2 (0,1) sL × . By invoking the theorem 
characterizing the general structure of bounded 
linear functionals over the product space 

2 (0,1) sL × , we are thereby positioned to 
articulate the principal proposition of the present 
manuscript. 

Theorem 3. Presume that 1 2( ), ( )x xσ σ  are 

arbitrary functions satisfying 1 2( ) (0,1),x Lσ ∈  
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admits a unique solution for every datum 

2 1( ) (0,1), , , sf x L ω ω∈ ∈ ∈   , and this 
solution is furnished by the rendering  
given in 
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Hence, Theorem 3 delineates the supplementary 

linear conditions (7) that guarantee the uniqueness of 
the solution. Furthermore, Theorem 3 is 

biconditional: the supplementary linear conditions 
therein are, in a certain regard, the most general 
admissible. 
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Theorem 4. Suppose that the BVP constituted by 
system (1), when supplemented by a certain 
assemblage of auxiliary linear conditions, admits a 
unique solution for every datum 2( ) (0,1),f x L∈

1 , , sω ω∈ ∈   . Then those auxiliary linear 
conditions are tantamount–up to linear equivalence–
to conditions of the form (7), for suitably chosen 
functions 1 2( ) (0,1),x Lσ ∈  2 2( ) (0,1)x Lσ ∈ , 

1 2,s sξ ξ∈ ∈
 

 
. 

Proof of Theorem 1. To commence the 
demonstration of Theorem 1, we shall first introduce 
the requisite notational framework: 

( )
( ) ; .ji
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dq xdhH x Q
dx dx

= =  

Utilizing the aforementioned notational 
conventions, we recast the first equation of regimen 
(1) into the following form:
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order to establish Theorem 1, it suffices to 
substantiate the following assertion. 
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1 2,C C   are arbitrary constants. 
In preparation for the verification of Lemma 

1, we proceed by establishing a set of auxiliary 
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Proof of Lemma 1. Let us rigorously ascertain that 
the expression appearing on the right-hand side of 

identity (10) indeed satisfies the DE delineated in (9). To 
that end, observe the following: 
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y x C y x C y x F x F t dt
y t y t
y t y t

′ ′
′ ′ ′= + +

′ ′

′ ′− − − −
′′ ′′ ′′= + + +

′ ′

∫

∫
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Consequently, one ascertains the validity of 
1 0( ) ( ) ( ) ( ) ( ) ( ), 0 1;y x r x y x r x y x F x x′′ ′+ + = < <  

within the established framework. Thus, the lemma 
stands established. It is worth observing that 
Theorem 1 ensues immediately as a corollary of 
Lemma 1. Proceeding further, by invoking the 
rendering (10), we determine the undetermined 
algebraic quantities 1, , sµ µ  and 1( ), ,U y 

( )kU y , and  

1 2,C C . The extraction of these 
quantities is carried out via the employment of 
Cramer's method. By applying this technique, we 
first substitute the ω



 into the j -th column of the 

0

A
C
 
 
 

, followed by the substitution of the vector 1b


, 

provided that 
0

det 0
A

C
 

∆ = ≠ 
 

. The ω


 and 1b


 are 

expounded in detail in Appendix 1, for 1, ,j s= 
. 

To facilitate the extraction of the 1( ), , ( )kU y U y  
the subsequent procedure is undertaken, we first 
substitute the ω



 into the ( )s i+ − th column of the 

0

A
C
 
 
 

, followed by the substitution of the 1b


, provi-

ded that 
0

det 0
A

C
 

∆ = ≠ 
 

,  1, ,i k= 
. Further-

more, in order to compute the  

1 2,C C  one is required 

to successively substitute the ω


 into the 
( 1)s k+ + − th and ( 2)s k+ + − th columns of the 

0

A
C
 
 
 

, followed by the insertion of the 1b


, 

contingent upon the non-vanishing of the 

0
det 0

A
C
 

∆ = ≠ 
 

. 

The verification of Theorem 2 fundamentally 
parallels the argumentative framework utilized in the 
establishment of Theorem 1. 

Proof of Theorem 3. The proof of Theorem 3 
follows from Theorem 2. To do this, it is sufficient to 
choose 1p  and 2p  as continuous linear functionals 

on the space 2 (0,1) sL × . We shall now undertake 
the rigorous justification of Theorem 3. Then, 

according to the Riesz representation theorem on the 
general form of a bounded linear functional on 

2 (0,1) sL × , we obtain 
 

1

1 1 1
10

1

2 2 2
10

( , ) ( ) ( ) ,

( , ) ( ) ( ) ,

s

m m
m

s

m m
m

p f f x x dx

p f f x x dx

ω σ ω ξ

ω σ ω ξ

=

=


= +



 = +

∑∫

∑∫





    (11) 

 
where 1 2 2 2( ) (0,1), ( ) (0,1)x L x Lσ σ∈ ∈ , 

1 2,s sξ ξ∈ ∈
 

 
. 

Now, let us replace ( )f x and 1, , sω ω
, as 

defined by the system of equations (1), with the 
quantities ( , )l y µ



 and 1( , ), , ( , )sy yθ µ θ µ
 


 in 

relations (11). Then, relations (7) follow, which can 
be interpreted as new boundary conditions. Theorem 
3 is thus completely proven. 

Proof of Theorem 4. We now proceed to the 
demonstration of Theorem 4. Let us postulate that the 
original regimen of equations specified in (1) is 
augmented by a collection Σ  of additional linear 
conditions, such that the extended system comprising 
the original relations and the supplementary con-
ditions-admits a unique solution, expressed in the 
form 

 
( ) 2

1 2( ), (0,1); , , (0,1) s
sw y x x Wµ µ= ∈ ∈ ×  (12) 

 
for every admissible datum 2( ) (0,1),f x L∈

1 , , sω ω∈ ∈   . 
Let ΣΛ  denote the operator associated with the 

system of differential relations (1) augmented by the 
supplementary conditions Σ . By virtue of the 
embedding theorem, it follows that both ( )y x  and its 

( )y x′  exhibit absolute continuity over the closed 
interval [0,1] . Consequently, for any admissible data 
set 2 1( ) (0,1), , , sf x L ω ω∈ ∈ ∈    the (0)y  и 

(0)y′ , , 1, , ,j j sµ =   are uniquely determined. 
Therefore, the quantity (0)y  may be regarded as a 
linear functional over the product space 

2 (0,1) sL × , insofar as its value varies linearly with 
respect to the choice of input data 

2 1( ) (0,1), , , sf x L ω ω∈ ∈ ∈   . In light of the  
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hypotheses stipulated in Theorem 1, it ensues that the 
inverse operator 1−

ΣΛ  is bounded on the 
2 (0,1) sL × . As a consequence, the priori estimates 

encapsulated in relation 
 

2

2

(0,1)
1 1

(0) (0)
s s

j jL
j j

y y C fµ ω
= =

′+ + ≤ +∑ ∑                                      (13) 

 
are satisfied. 

Consequently, from the a priori estimate (13), it 
follows that the functionals 1 2( , ), ( , )V y V yµ µ

 

manifest as linear and bounded functionals defined 
on the 2 (0,1) sL × . Invoking the classical Riesz 
rendering theorem concerning the canonical structure 
of bounded linear functionals in 2 (0,1) sL × , one 
deduces the existence of a unique pair–specifically, a 
function 1 2( ) (0,1)x Lσ ∈  and 1

sξ ∈



such that the 

following rendering holds: 
1

1 1 1
10

1

2 2 2
10

( , ) ( ) ( ) ,

( , ) ( ) ( ) ,

s

m m
m

s

m m
m

V y f x x dx

V y f x x dx

µ σ ω ξ

µ σ ω ξ

=

=


= +



 = +

∑∫

∑∫





   (14) 

where the construction of 2 ( , )V y µ


 proceeds in 

complete analogy with that of 1( , )V y µ


. 
We now consider (1) augmented by the 

conditions (14), after substituting ( )f x  with 
( , )l y µ


, and replacing 1, , sω ω
 with 

1( , ), , ( , )sy yθ µ θ µ
 


. According to Theorem 4, 

this modified problem admits a unique solution, 
which coincides with the solution w  as described in 
(12). Hence, it follows that the conditions specified 
in (14) are equivalent to the supplementary 
conditions Σ . The proof of Theorem 4 is thereby 
completed. 

Appendix 1. In the context of Theorem 1, the 
following notations are introduced:

 

1 1 1

1 4 1 1 04 2 2 40 1 2 4
1 1

2 5 1 1 05 2 2 50 1 2 5
1 1

3 ( ) 1 1 0( ) 2 2 ( )0 1 2
1

( ) ( ) ( ) ( ) ;

( ) ( ) ( ) ( ) ;

( ) ( ) ( ) ( )

s k

m m m i i i
m i

s k

m m m i i i
m i

s

m m s i m s i s i i i i
m

A b d H H H H

A b d H H H H

A b d H H H H

α γ α γ β β

α γ α γ β β

α γ α γ β β

= =

= =

+ + +
=

 = − + − + + + + + 
 
 = − + + + − + + + 
 

= − + − + + + + +

∑ ∑

∑ ∑

∑
1

( )
1

4 1 1 0 2 2 0 1 2
1 1

;

( ) ( ) ( ) ( ) ;

k

s i
i

s k

m m jm j j i i ij
m i

A b d H H H Hα γ α γ β β

+
=

= =

 
 
 
 = − + − + + + + + 
 

∑

∑ ∑

 

 

( )
1

1

( ) ; 1, , ;

( ) ; 1, , ;

s

s i m s i m
m
s

j m jm
m

H H i k

H H j s

ω ω

ω ω

+ +
=

=

= =

= =

∑

∑









 

0 1
1

11 2
1

( ) ;

( ) .

s

m m
m

s

m m
m

H H

H H

ω ω

ω ω

=

=

=

=

∑

∑




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whereby, 0 ( )H ω


 denotes the determinant of the 
matrix obtained by replacing the ( 2)s k+ + − th 

column of the 
0

A
C
 
 
 

 with the ω


, and 11( )H ω


 

represents the determinant of the matrix derived by 

substituting the ( 2)s k+ + − th column of the 
0

A
C
 
 
 

 

with the ω


, ( ) ( )s iH ω+



 denotes the determinant of 

the matrix obtained by replacing the ( )s i+ − th 

column of the 
0

A
C
 
 
 

 with the ω


, and ( )jH ω


 

represents the determinant of the matrix derived by 

substituting the j − th column of the 
0

A
C
 
 
 

 with the 

ω


,, provided that, 
0

det 0
A

C
 

∆ = ≠ 
 

. 



4 ( )H f  denotes the determinant of the matrix 
obtained by replacing the ( 1)s k+ + −  th column of 

the 
0

A
C
 
 
 

 with the 1b


, and 

5 ( )H f  represents the 

determinant of the matrix derived by substituting the 

( 2)s k+ + −  th column of the 
0

A
C
 
 
 

 with the 1b


, 

( )s iH f+  denotes the determinant of the matrix 
obtained by replacing the ( )s i+ −  th column of the 

0

A
C
 
 
 

 with the 1b


, and ( )jH f  represents the 

determinant of the matrix derived by substituting the 

j −  th column of the 
0

A
C
 
 
 

 with the 1b


, provided 

that, 
0

det 0
A

C
 

∆ = ≠ 
 

; 

the 1mH  emerges in the cofactor expansion of the 

0 ( )H ω


 along its ( 1)s k+ + −  th column, 
1, , ;m s=   

the 2mH  emerges in the cofactor expansion of the 

11( )H ω


 along its ( 2)s k+ + −  th column, 
1, , ;m s=   

the ( )s i mH +  emerges in the cofactor expansion of 

the ( ) ( )s iH ω+



 along its ( )s i+ −  th column, 

1, , ; 1, , ;m s i k= =   
the jmH  emerges in the cofactor expansion of the 

( )jH ω


 along its j −  th column, 

1, , ; 1, , ;m s j s= =   
the 4 4 04 40, , ,m iH H H H  emerge in the cofactor 

expansion of the 

4 ( )H f  along its ( 1)s k+ + −  th 
column 1, , ; 1, , ;m s i k= =   

the 5 5 05 50, , ,m iH H H H  emerge in the cofactor 

expansion of the 

5 ( )H f  along its ( 2)s k+ + −  th 
column 1, , ; 1, , ;m s i k= =   

the 
1( ) 0( ) ( )0 ( ), , ,s i m s i s i i s iH H H H+ + + +  emerge in 

the cofactor expansion of the ( )s iH f+  along its 
( )s i+ −  th column 1, , ; 1, , ;m s i k= =   

the 0 0, , ,jm ij j jH H H H  emerge in the cofactor 

expansion of the ( )jH f  along its j −  th column, 

1, , ; 1, , ;m s i k= =   
 













1

1

1
1

2

3

( )

( )

( )
;

( )

( )

( )

k

V f

V f

U f
b

U f

V f

V f

 −
 
 
 − 
 −
 =
 
 − 
 − 
 − 







1

0

0
0
0

s

ω

ω

ω

 
 
 
 
 
 =  
 
 
 
 
  







. 

Appendix 2. Information about matrix 
0

.
A

C
 
 
 

 

Let us recast (10) into the following equation: 
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    

1 1 2 2
1 1

( ) ( ) ( ) ( ) ( ) ( ),
k s

i i j j
i j

y x C y x C y x f x U H x Q xµ
= =

= + + − −∑ ∑                                  (15) 

hereby, 







1 2

1 2

1 20

1 2

1 2

1 2

1 20

1 2

1 2

1 2

1 20

1 2

( ) ( )
( ) ( )

( ) ( ) ;
( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) ;
( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) .
( ) ( )
( ) ( )

x

x

i i

x

j j

y t y t
y x y x

f x f t dt
y t y t
y t y t

y t y t
y x y x

H x H t dt
y t y t
y t y t

y t y t
y x y x

Q x Q t dt
y t y t
y t y t

=

′ ′

=

′ ′

=

′ ′

∫

∫

∫

 

 
 

By incorporating the second relation from the 
regimen (1), together with the subsidiary conditions 

(3), into equation (15), we obtain the following 
refined formulation.

 

    

    

   

1 1

1

1

1

1

1 1 1 2 1 2 1 1 1
1 1 1

1 1 2 2 1
1 1

1 2 1 2 2 2 2 2 2

( ) ( ) ( ) ( ) ( ) ( ) , 1, , ;

( ) ( ) ( ) ( ) ( ) ( ( )) ( ( )), 1, ;

( ) ( ) ( ) ( ) ( ) (

s k s

mj j i i j j m
j i j

k s

p p p p i p i j p j
i j

i i j

a C V y C V y V f U y V H V Q m s

U y C U y C U y U f U y U H x U Q x p k

C V y C V y V f U y V H V Q

µ µ ω

µ

µ

= = =

= =

+ + + − − = =

= + + − − =

+ + − −

∑ ∑ ∑

∑ ∑







    

1

1

1 1

1

1 1

1 3 1 2 3 2 3 3 3
1 1

) 0;

( ) ( ) ( ) ( ) ( ) ( ) 0;

k s

j
i j

k s

i i j j
i j

C V y C V y V f U y V H V Qµ

= =

= =








 =


 + + − − =


∑ ∑

∑ ∑

 (16) 

 
hereby, 

1

2 1 1 1 1

3 2 2 2 2

(1) (0)( ) (1) (0) ;

(1) (0)( ) (1) (0) ;

(1) (0)( ) (1) (0) .

m m m m
dy dyV y b y c y d e

dx dx
dy dyV y y y

dx dx
dy dyV y y y

dx dx

α β γ δ

α β γ δ

= + + +

= + + +

= + + +
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(16) shall be reformulated in a compact matrix-vector 
framework. 

Appendix 3. Information about theorem 2. 

1( )H p


denotes the determinant of the matrix 
obtained by replacing the ( 1)s k+ + − th column of 

the 
0

A
C
 
 
 

 with the 

1

2

0

0p
p
p

 
 
 
 =
 
 
  





, and 2 ( )H p


 denotes 

the determinant of the matrix obtained by replacing 

the ( 1)s k+ + − th column of the 
0

A
C
 
 
 

 with the p


, ( ) ( )s iH p+



 denotes the determinant of the matrix 

obtained by replacing the ( )s i+ −  th column of the 

0

A
C
 
 
 

 with the p


, and ( )jH p


 denotes the 

determinant of the matrix obtained by replacing the 

j −  th column of the 
0

A
C
 
 
 

 with the p


, 

0
det 0

A
C
 

∆ = ≠ 
 

. We shall henceforth refer to 

1 1 01 2 10

2 1 02 2 20

( ) 1 ( )2 2 ( )3

1 2 2 3

( ) ;

( ) ;

( ) , 1, , ;

( ) ; 1, , .
s i s i s i

j j j

H p p H p H

H p p H p H

H p p H p H i k

H p p H p H j s
+ + +

= ⋅ + ⋅

= ⋅ + ⋅

= ⋅ + ⋅ =

= ⋅ + ⋅ =













 

 
Conclusion 
 
In the present manuscript, a hybrid-structured DE 

is examined. The principal aim is to explore the 
possibility of substituting the given supplementary 
boundary conditions with alternative, equivalent 
ones. This objective is achieved through the 

formulation and proof of four theorems, providing a 
rigorous foundation for the proposed substitutions. 
Incipiently, the existing boundary conditions are 
considered in a nonhomogeneous context. 
Subsequently, new boundary conditions, denoted as 
(7), are introduced. These newly formulated 
conditions are demonstrated to be equivalent to the 
original ones, ensuring the unique solvability of the 
hybrid-structured regimen labeled as (1). The 
regimen under consideration is characterized as 
hybrid due to the presence of both unknown functions 

1( ), , ( )kU U⋅ ⋅  and algebraic components. This 
dual nature necessitates a nuanced approach to 
boundary condition formulation and analysis. The 
methodology employed underscores the importance 
of flexibility in boundary condition specification, 
particularly in complex or hybrid regimens. By 
establishing the equivalence of different boundary 
conditions, the manuscript provides valuable insights 
into the solvability and analysis of such regimens. 
The results presented pertain to the smooth case, 
specifically when 1

2( ) [0,1]ih x W∈  for 1, ,i k= 
 

and 1
2( ) [0,1]jq x W∈  for 1, ,j s= 

, with the 

1( ), , ( )kU U⋅ ⋅  selected as in equation (2). 
However, the scenario involving non - smooth  
 
sets of functions }{ 1( ), , ( )kh h⋅ ⋅  and  
 

}{ 1( ), , ( )sq q⋅ ⋅  presents significant interest. In 
such cases, the concept of a quasi - derivative 
becomes pertinent. This notion is extensively applied 
in monographs [27, 28]. The authors intend to 
dedicate a separate study to this particular case 
involving non - smooth functions }{ 1( ), , ( )kh h⋅ ⋅  

and }{ 1( ), , ( )sq q⋅ ⋅ . 
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