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Introduction 

A pure linear ordering is a set equipped solely 
with a total order, without additional algebraic or top-
ological structure. The study of such orderings dates 
back to foundational work in set theory and logic, ex-
ploring their classification and embedding properties. 
A particularly important subclass is o-minimal order-
ings, where every definable subset consists of a finite 
union of points and intervals. These structures pro-
vide a well-behaved framework in model theory, en-
suring tame topological and combinatorial properties, 
making them crucial in applications to real algebraic 
and analytic geometry. First, o-minimal pure linear 
orderings were classified, followed by weakly o-min-
imal ones. In this paper, we propose the description 
of pure linear orderings of Morley o-rank 1 and o-
degree at most 2. 

Literature review 

Investigation of pure linear orderings is a classi-
cal mathematical question with a long bibliography 
that lasts till our days; for instance, one can see [1, 3–
9, 17–18]. A. Pillay and C. Steinhorn described pure 

linear orderings that are o-minimal in [12], and B. 
Kulpeshov described such orderings that are weakly 
o-minimal in [10]. In [11], B. Kulpeshov and S. Su-
doplatov described all possibilities of rigidity degrees
for countable pure linear orderings, and in [12], they
described all possibilities of rigidity degrees for
weakly o-minimal pure linear orderings. Later, B.
Baizhanov and V. Verbovskiy introduced the notion
of an o-stable theory in [2] and proved that the ele-
mentary theory of any pure linear ordering is o-super-
stable. O-stable theories and their applications to the
investigation of ordered groups and fields were in-
vestigated in [15–16]. V. Verbovskiy introduced the
notion of the Morley o-rank and the Morley o-degree
in 2008, one can find it in [15]. The concept of stabil-
ity is too crude to describe pure linear orders because
all of them are o-superstable. Still, the concept of the
Morley o-rank and the Morley o-degree is a sharper
tool for describing pure linear orders. In [14], A. Pil-
lay and C. Steinhorn showed that an o-minimal struc-
ture has the Morley o-rank 1, and the Morley o-de-
gree 1 (but in other terms), and B. Kulpeshov proved
that weakly o-minimal theories have the Morley o-
rank 1, and Morley o-degree at most 2 [10]. It is quite
straightforward to show the existence of an ordered
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structure of the Morley o-rank 1 and the Morley o-
degree 2 that is not weakly o-minimal. Thus, the 
question of describing all pure linear orderings of the 
Morley o-rank 1 and the Morley o-degree 2 is open. 
Our article is devoted to answering this question. 

 
Methodology 
 
This paper investigates the class of all pure linear 

orderings. We apply the methods of Model Theory, 
namely, of the relative stability, o-stability, and Mor-
ley o-rank, as well as the classical methods of inves-
tigation of pure linear orderings. 

 
Results and discussion 
 
Definition 1 (B. Baizhanov, V. Verbovskiy [2])  
1. An ordered structure   is o-stable in λ  if 

for any A M⊆   with | |A λ≤   and for any cut 
,C D〈 〉   in    there are at most λ   1-types over 

A   which are consistent with the cut ,C D〈 〉  , i.e. 
1

,| ( )| .C DS A λ〈 〉 ≤  

2. A theory T  is o-stable in λ  if every model 
of T  is. Sometimes we write T  is o-λ -stable. 

3. A theory T  is o-stable if there exists an infi-
nite cardinal λ  in which T  is o-stable. 

 
Definition 2 Let ( )s x   be a partial 1 -type, and 

let ( )xϕ   and ( )xψ   be formulae. We say that 
( )xϕ   and ( )xψ   are s  -inconsistent if 
( ) { ( ), ( ))}s x x xϕ ψ∪  is inconsistent. 

 
Definition 3 (V. Verbovskiy, [15])  
1. We say that the Morley o-rank of a formula 

( )xφ   inside a cut ,C D〈 〉   in    is equal to or 
greater than 1  and write o- , , ( ) 1C DRM φ〈 〉 ≥   for 

this, if { ( )} ,x C Dφ ∪〈 〉  is consistent. 
2. o- , , ( ) 1C DRM φ α〈 〉 ≥ +  if there are infinitely 

many pairwise ,C D〈 〉  -inconsistent formulae 
( )i xψ  such that , , ( ( ) ( ))C D iRM x xφ ψ α〈 〉 ∧ ≥ . 
3. If α   is a limit ordinal, then o-

, , ( )C DRM φ α〈 〉 ≥  if o- , , ( )C DRM φ β〈 〉 ≥  for all 

<β α . 
4. o- , , ( )=C DRM φ α〈 〉   if o- , , ( )C DRM φ α〈 〉 ≥  

and , ,( - ( ) 1)C Do RM φ α〈 〉¬ ≥ + . 

5. We define the Morley o-rank of a formula 
( )xφ  inside   as follows: 

 

( ), ,

- ( )=
=sup{ - : , is a cut in }.C D

o RM
o RM C D

φ

φ


 
 

  
6. We define the Morley o-rank of a formula 

( )xφ  as follows: 
 

( ), ,- ( )=sup{ - :

and , is a cut in }.
C Do RM o RM

T C D

φ φ

〈 〉
 

 
 

 
We define the Morley o-degree of a formula in-

side a cut 
1. Let ,C D〈 〉   be a cut in an ordered structure 

  and let o- , , ( )=C DRM φ α〈 〉   for some formula 

φ . We say that the Morley o-degree of ( )xφ  inside 
the given cut ,C D〈 〉  in   is equal to n  and we 
write o- , , ( )=C DMD nφ〈 〉   for this, if there exist ex-

actly n   pairwise ,C D〈 〉  -inconsistent formulae 
( )i xψ  such that , , ( ( ) ( ))=C D iRM x xφ ψ α〈 〉 ∧ . 
2. We define the Morley o-degree of a formula 

( )xφ  inside   as follows: 
 

 
( ), ,

, ,

- ( )=sup{ - : ,

is a cut in and - ( )= }.
C D

C D

o RM o RM C D

o RM

φ φ

φ α〈 〉

 


 

 
3. We define the Morley o-rank of a formula 

( )xφ  as follows: 
 

( ), ,- ( )=sup{ - :

, , is a cut in , and
C Do RM o RM

T C D

φ φ

〈 〉
 

 
 

, ,- ( )= - ( )}.C Do RM o RMφ φ〈 〉   
 
We define the Morley o-rank of a type as the min-

imal Morley o-rank of a formula from this type. 
We aim to completely describe pure linear order-

ings whose elementary theory has the Morley o-rank 
1 and the Morley o-degree 2. First, we recall the com-
plete description of pure linear orderings that are 
weakly o-minimal. 

We first recall some standard notations, as they 
have been given in [3]. If M   and N   are linear 
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orderings, then M N+  denotes the ordered sum of 
M  and N . As usual, ω  represents the ordering of 
the natural numbers, *ω  the reverse ordering on the 
natural numbers, and   the ordering of the rational 
numbers. Let F  be the set of all finite linear order-
ings, and 

 
* * *= { , , , , }G F ω ω ω ω ω ω∪ + +   

 
Also, let WO   be the collection of all ordered 

sums of the form 1 mC C+ +  , where iC   is ele-
mentarily equivalent to some member of G  for each 
i m≤ . 

 
Theorem 1 (B. Kulpeshov [10]) Any weakly o-

minimal structure    restricted to the signature 
{=,<}  is a member of WO  , and conversely, the 
first-order theory of any member of WO  is a weakly 
o-minimal theory of linear order.  

 
Let =( ,<)M  be a linearly ordered structure. 

We recall the following formulae. A formula ( )S x  
saying that an element x  has a successor we define 
as ( )= ( < ( < <S x y x y z x z y∃ ∧¬∃ ))  . In a similar 
way, we define a formula ( )P x  that says that an el-
ement x   has a predecessor. We define a formula 

( , )D x y  saying that each element in some open in-
terval, containing both x  and y , has neither a suc-
cessor nor a predecessor: 

 
( , )= ( < < < <
( ( ( ) ( ))).

D x y u v u x v u y v
z u z v S z P z

∃ ∃ ∧ ∧
∧∀ ≤ ≤ → ¬ ∧¬

 

 
Also, we define a formula ( , )x y∆   which says 

that each element between x   and y   has both a 
successor and a predecessor, x  has a successor, and 
y  has a predecessor: 

 
( , )= < ( ) ( )

( < < ( ( ) ( ))).
x y x y S x P y
z x z y S z P z

∆ ∧ ∧ ∧
∧∀ → ∧

 

 
Now we define an equivalence relation E  , 

whose classes are maximal convex sets, ordered ei-
ther densely or discretely: 

 

( , )= ( , ) ( , ) ( , ) = .E x y D x y x y y x x y∨ ∆ ∨ ∆ ∨  
 
It is just a routine to check the reflexivity, sym-

metry, and transitivity of E , as well as that each E
-class is convex. 

Observe that if an element has a predecessor but 
no successor, then this element is a maximal element 
in its E -class. Similarly, if an element has a succes-
sor but no predecessor, then this element is a minimal 
element in its E -class. 

We say that an E -class is open if it has neither a 
minimal element nor a maximal one. 

 
Lemma 1 Let T  be a theory expanding the the-

ory of linearly ordered sets of the Morley o-rank 1 
and the Morley o-degree n . Let E  be the equiva-
lence relation defined above. Then, the number of E
-classes that are not open and of cardinality bigger 
than n  is finite.  

Proof. First, we claim that if an E -class is not 
open, then it is discretely ordered. Without loss of 
generality, we may assume that an E -class contains 
a maximal element a . If [ ]Ea  consists just of a , 

then the order is trivially discrete. Otherwise, [ ]Ea  
contains some <b a  . If ( , )b a∆   holds, then obvi-
ously the order is discrete. Assume that ( , )D b a  
hold, then by definition, there exist c  and d  with 

< < <c b a d   such that each element in [ , ]c d   has 
neither successor nor predecessor, so do a  , for a 
contradiction. 

Assume the contrary, that there exist infinitely 
many E -classes that are not open and whose cardi-
nality is bigger than n  . By Dirichlet’s principle, 
there exist infinitely many E -classes with a minimal 
element or infinitely many E -classes with a maxi-
mal element, say, the first case holds. Also, we can 
find either an infinite increasing chain of such E  -
classes or an infinite decreasing one. Without loss of 
generality, we can assume that there exists an infinite 
increasing sequence : <ka k ω〈 〉   such that 

( , )i jE a a¬  for each <i j , and each E -class of ka  

contains a minimal element kb  and has a cardinality 
bigger than n . 

Let ={ : < kC c M c a∈   for some < }k ω   and 
= \D M C . Then the formula 
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>

( )= ( ( , )
( < ( , ) ( , ))n

x y E x y
z z y E z x tE x t

ϕ ∃ ∧

∧∀ →¬ ∧∃
 

 
is consistent with the cut 
( , )={ < < : , }C D c x d c C d D∈ ∈ . Indeed, let c C∈  
and d D∈  . Then there exists k   such that < kc a  . 

Also, there exist 2 3' ( , ).k kc a a+ +∈   Since 

2> '> ,kd c a +   the E  -class of 1ka +   is a subset of 

( , )c d . Then 1( ) ( , ) [ ]k Ec d aϕ +∩ ⊇ ≠ ∅ . Since 
any non-empty finite intersection of intervals is an in-
terval, we obtain that ( )xϕ  is consistent with the cut 
( , )C D . 

Let ( )i xϕ  say, that x  is the i -th successor of 
the minimal element from the E -class of x  (here, 
the 0 -th successor of an y  is y ). Obviously, each 

( )i xϕ   is consistent with ( , )C D   and 
( ) ( )i jx xϕ ϕ∧  is inconsistent for each <i j . Hence, 

the Morley o-degree of the cut ( , )C D   is at least 
1n +  for a contradiction. 
 
Lemma 2 A structure of the form nF+ ×   

has Morley o-degree 1n + , as well as the structures 

nF× +   , nFω + ×  , *
nFω ω+ + ×  , 

*
nF ω× + , and *

nF ω ω× + + .  

Proof. Let =C    and = nD F×  . Let q C∈  . 

Then [ ] =Eq  . Let na F∈ × . Then [ ]Ea  is a fi-

nite order consisting of n   elements. Let ( )i xϕ   be 
defined as in Lemma 1 

We consider the cut ( , )C D  . Then 
{ ( , )} { < < : , }E x q c x d c C d D∪ ∈ ∈  is consistent as 
well as { ( , ) ( )} ( < < )iE x q x C x Dϕ¬ ∧ ∪  . That is, 
there are at least 1n +  extensions. 

The other cases are similar. 
Theorem 2 Let 1 1 1= ( ,<, )A A Σ   and 

2 2 2= ( ,<, )A A Σ   be two linear orders whose ele-
mentary theories admit quantifier elimination; either 

1A   does not have a maximal element or 2A   does 
not have a minimal element; and each symbol in iΣ  
is definable in iA ; moreover, it is either a unary  
 

predicate, unless it is the equivalence relation E  
defined above, or the successor function; also 

1 2Σ Σ∩  contains {=,<, }E . We consider their or-
dered sum 1 2=B A A+   in the signature 

1 2 1 2= {<, , }P PΣ Σ Σ∪ ∪  , where iP   names iA  . 
Then, the elementary theory 1 2 1 2( , )Th A A Σ Σ+ ∪  
admits quantifier elimination.  

Proof. We show that the elementary theory of 
=( , )B Σ , where 1 2=B A A+  and 1 2=Σ Σ ∪Σ , ad-

mits quantifier elimination. By Tarski’s test, it is suf-
ficient to eliminate the existential quantifier in each 
formula of the type = ( , )i i ix x yθ ϕ∃ ∧ , where iϕ  is 
either an atomic formula or the negation of an atomic 
formula. 

We separate atomic formulae of 1Σ  and 2Σ  in 
the following way. Let, for {1, 2}i∈ , 

 
1( , )= { ( , ) : }.i i i ii

i
x z x yψ ϕ ϕ ∈Σ∧  

Then 
 

1 21 2( , ) ( ( , ) ( , )).i i
i

x x y x x y x yϕ ψ ψ∃ ⇔ ∃ ∧∧  

If both 1ψ   and 2ψ   contain some unary predi-
cates, then θ   is inconsistent because these unary 
predicates define subsets of 1A   and of 2A  , but 

1 2 =A A∩ ∅  . If θ   contains at least several occur-
rences of E , we replace them in the following way. 
Since ( , ) ( , )E x y E x z∧   is equivalent to 

( , ) ( , )E x y E y z∧ , we may assume that θ  contains 
at most one occurrence of ( , )E x y . Each atomic for-
mula µ  that does not contain x  can be omitted in 
the following sense: 

( ( ) ) ( ( ))x F x xF xµ µ∃ ∧ ⇔ ∃ ∧ . After all these ma-
nipulations, we obtain a formula of either the signa-
ture 1Σ  or 2Σ . 

If it is a formula of 1Σ , but not of 2Σ , then we 

use quantifier elimination of 1 1( , )Th A Σ . If it is a for-

mula of 2Σ , but not of 1Σ , then we use quantifier 

elimination of 2 2( , )Th A Σ . Assume that it is a for-

mula of 1 2Σ ∩Σ . Let = ( )x xθ χ∃ . Then 
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1 2

1 2

( ) (( ( ) ( )) ( ( ) ( )))
( ( ) ( )) ( ( ) ( )).

x x x x P x x P x
x x P x x x P x

χ χ χ
χ χ

∃ ⇔ ∃ ∧ ∨ ∧ ⇔
⇔ ∃ ∧ ∨∃ ∧

 

 
We obtain two formulae of 1Σ  and 2Σ , corre-

spondingly. Then we proceed as above. 
Note that the successor function ( )s x   cannot 

map an element from 1A   to an element from 2A  

because by the hypothesis of this theorem, either 1A  

does not have a maximal element or 2A   does not 
have a minimal element. 

Let * * *={ , , , , }H ω ω ω ω ω ω+ +   . We define 

d   as follows. We take 2∪ ⋅    with the or-
dering coming from   and replace each element of 
  by   and each element of 2 ⋅  by *ω ω+  
to obtain d . Let 

 
*

*

={ ( ) : }
{ ( ) : }.

H X X H
X X H

ω ω

ω ω

× + + ∈ ∪

∪ × + + ∈

 


 

 
Let 
 

1,2 2= { , }.dG G H F∪ ∪ ×    
 
Note that if we consider the quotient of an ele-

ment of H  by the equivalence relation E  then we 
obtain a structure of the form 2X F× . 

Also, let 1,2   be the collection of all ordered 

sums of the form 1 mC C+ +  , where iC   is ele-
mentarily equivalent to some member of 1,2G   for 
each i m≤ , where there are no two consecutive ele-
ments of the form    and Z   where 

2{ , }dZ F∈ ×    as well as the following sums: 

Zω +  , * Zω ω+ +  , and *Z ω+  , *Z ω ω+ +  ; 
also, we exclude the following cases: let Y H∈   be 
such that /Y E   does not have a minimal element; 
then we exclude summands of the form Y+   as 

well as Yω + , * Yω ω+ + ; if /Y E  does not have 
a maximal element then we exclude summands 
Y + , *Y ω+ , *Y ω ω+ + . 

 

Theorem 3 Any totally ordered structure   , 
whose elementary theory has the Morley o-rank 1 
and the Morley o-degree 2, restricted to the signature 
{=,<}  is a member of 1,2  , and conversely, the 

first-order theory of any infinite member of 1,2  has 
the Morley o-rank 1 and the Morley o-degree at most 
2.  

Proof. Let E   be the equivalence relation de-
fined above. By Lemma 1, it holds that E  -classes 
consisting of nF  for >2n  cannot form a dense sub-
set of  ; otherwise, we obtain Morley o-degree at 
least >2n . Assume that E -classes consisting of 2F  
form a dense subset of ( , )/a b E   for some interval 
( , )a b . We claim that then this interval consists of 
E -classes, that consist of 2F . Indeed, we can have 
in this interval E -classes that are singletons, that is, 

1F , but then each cut in this interval has 3 comple-
tions: E  -class of x   is a singleton; E  -class of x  
consists of 2 elements and x   is the first one; E  -
class of x  consists of 2 elements and x  is the sec-
ond one. So, ( , )a b   is elementarily equivalent to 

2F× . 
By Lemma 1 we can have infinitely many classes 

of the form either   or *ω ω+ . We consider the 
definable subset Ω   of M   consisting either of 
dense E -classes (elementarily equivalent to  ) or 
of discrete open E -classes (elementarily equivalent 
to *ω ω+ ). Then /EΩ  can have at most two con-
secutive elements: it is either 2F , or does not contain 

a distinguishable element; so, it is either *ω ω+ +
, or *ω ω+ + . 

Hence, we obtain that each summand is elemen-
tarily equivalent to some of 1,2G . 

For each element from 1,2G  it is well-known that 
its elementary theory admits quantifier elimination or 
the quantifier elimination theorem is simple and 
straightforward. So, it is just a routine to check that 
each element of 1,2G  has Morley o-rank 1 and Mor-
ley o-degree at most 2. Theorem 2 provides quantifier 
elimination for any finite sum of linear ordering from 

1,2G . Quantifier elimination shows that any infinite  
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member of 1,2  has Morley o-rank 1 and Morley o-
degree at most 2. 

Let    be an ordered structure and ( )F x   a 
formula. We define the convex hull cF  of F  as: 

 
( )= ( ( ) ( ) ).cF x y z F y F z y x z∃ ∃ ∧ ∧ ≤ ≤  

 
Let p   be a 1-type. We define the convex hull 

cp  of p  as the following partial type: 
 

( )={ ( ) : ( ) ( )}.c cp x F x F x p x∈  
 
Sometimes we call a type, which is the convex 

hull of some type, a convex type. 
Definition 4 Let   be an ordered structure and 

1( )p S M∈ .  
1. We say that the Morley c-rank of a formula 

( )xφ   inside cp   is equal to or greater than 1  and 

write 
,

( ( )) 1cp
RM xφ ≥


  if { ( )} ( )cx p xφ ∪   is 

consistent. 
2. 

,
( )( ) 1cp

RM xφ α≥ +


 if there are infinitely 

many pairwise inconsistent formulas ( )i xψ   such 

that 
,

( ( ) ( ))c ip
RM x xφ ψ α∧ ≥


. 

3. If α   is a limit ordinal, then 

,
( ( ))cp

RM xφ α≥


  if 
,

( ( ))cp
RM xφ β≥


  for all 

<β α . 
4. 

,
( ( ))=cp

RM xφ α


  if 
,

( ( ))cp
RM xφ α≥


 

and 
,

( ( )) 1cp
RM xφ α +


 . 

Similarly, one can determine the Morley c-degree 
of a formula inside a cut. One can also determine the 
Morley c-rank of a type. 

We say that the Morley convex-rank of a formula 
( )xφ  inside   equals 

 

1,
- ( ( ))=sup{ ( ( )) : ( )}.cp

c RM x RM x p S Mφ φ ∈ 
 

 
Definition 5 Let T   be a complete theory, ex-

panding the theory of a linearly ordered set. 
We say that the Morley convex-rank of a formula 

( )xφ  in T  equals 
 
- ( ( ))=sup{ ( ( )) : }.c RM x c RM x Tφ φ−    
 
Let us define 1,2  as the set of all finite ordered 

sums of the form 1 ... mC C+ + , where each iC  is el-
ementarily equivalent to some element of 1,2G . 

As it was proved in [1] each cut can have at most 
two extensions up to the type that are the convex hull 
of some type. In Theorem 3 we count the number of 
completions of a cut taking into account completions 
of each convex type. In the next theorem we consider 
these convex types separately, that is why the de-
scription is simpler. The proof is similar to the proof 
of Theorem 3, that is why we omit it. 

Theorem 4 c- ( ) = 1RM    and c-
( ) 2DM ≤   if and only if ≡    for some 

1,2∈  .  
 
Conclusion 
 
In this paper, we have given a description of pure 

linear orderings of the Morley o-rank 1 and the Mor-
ley o-degree at most 2. It will be interesting to con-
tinue such kind of description and give the character-
ization of all pure linear ordering of the Morley o-
rank 1 for each Morley o-degree. 
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