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Inverse Source Problem for advection-diffusion equation from boundary measured data
Abstract. The inverse problem for the advection-diffusion equation is considered in this paper. The study 

focuses on reconstructing a space-dependent source of a variable-coefficient advection-diffusion equation with 
separable sources from time-dependent temperature measurements at the right boundary of the domain. The
Tikhonov regularization method is used to determine the space-dependent source function. These problems
arise in various fields of science and engineering. The source term takes the form of separated variables, where
one function describes the time evolution and the other represents the spatial distribution of some contaminant
source. Such source terms also arise as control terms in the context of heat equations. Numerical experiments
were conducted to demonstrate the accuracy and robustness of the proposed method. A non-iterative inversion
algorithm is developed and numerically implemented for identifying the unknown space-dependent source.
Consequently, identifying space-dependent or time-dependent sources is crucial in addressing environmental
issues, which served as the motivation for proposing this problem.
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Introduction 

In this paper we consider the inverse source problem of identifying the unknown space-dependent source 
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from the Dirichlet boundary measured data 

( ) ( ) ( ].,0,, Tttlutg ∈=      (2) 

Direct and inverse boundary value problems for 
advection-diffusion equations are extensively 
applied in the mathematical modelling of natural 
phenomena and technological processes [1-17].  

Analytical approaches for solving direct 
diffusion-advection problems have been intensively 
investigated [3-5]. On the other hand, the 
investigation of corresponding inverse source 
problems has garnered significant attention in recent 
years mainly due to their numerous practical 

applications, such as identifying pollution sources in 
an environmental medium ([4-10]).  

In [10] an analytical method based on the quazi-
reversibility method and the Fourier transform tool 
was developed to solve advection dispersion equation 
in rivers inversely in time. A two-stage numerical 
approach to solve the sparse initial source 
identification of a diffusion-advection equation has 
been discussed in [11]. An inverse problem related to 
a fractional diffusion equation is considered in 
[12,14]. The ill-posedness, existence and uniqueness 
of the inverse source problem of time fractional 
diffusion wave equation in a cylinder are proved in 
[12]. In [13] the study focused on the reconstruction 
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of an unknown source term from a partial internal 
measured data. The considered ill-posed inverse 
problem is formulated as a minimization one and 
numerical reconstruction of the unknown source 
terms is investigating using an iterative process. Two 
inverse source problems, such as the recovery of 
space dependent source term and determination of 
time dependent source term are considered and 
existence, uniqueness and stability results are proved 
in [14]. 

The continuation inverse problem for a 3D 
steady-state diffusion model inside a cylindrical 
layered medium is considered in [15]. This model is 
used to describe the process of heat conduction and 
diffusion in protective coatings of gas and oil 
pipelines, the shell of reactors in the chemical 
industry and other industrial processes. In such cases, 
only the outer side of coverings is available for 
measurements, when it is necessary to recover the 
conditions inside the coverings in order to control the 
equipment state. The diffusion coefficient is 
supposed to be a piecewise constant function, 
depending on radius, Cauchy data are given on the 
outer boundary of the cylinder and temperature is 
recovered at the inner boundary of the cylinder.  

Inverse source problems focus on reconstructing 
unknown sources from measurable boundary and/or 
final output data. These problems arise in various 
field of science and engineering. Significantly, the 
existence, uniqueness and conditional stability for 
inverse source problems for partial differential 
equations with variable coefficients have been 
rigorously analyzed in [9,18-23]. 

 In [9], the authors investigate the reconstruction 
of a time-dependent source of a one-dimensional 
evolution linear advection–dispersion–reaction 
equation with spatially varying coefficients. Well-
posedness of the inverse problems for finding the 
space dependent vector function ( )p x  in general
parabolic systems with vector sources of the form 
( ) ( ) ( ) ( ), , ,F x t H x t p x q x t= + was investigated

in [19]. In [20], the authors proved that in the 
parabolic heat equation ( )tu Lu F x+ =  subject to
zero Dirichlet condition on the boundary Γ  of the 
domain nR∈Ω , 1n ≥ , initial condition 

( ) 0,0u x u=  and final data over-determination

( ), Tu x T u= , a time-independent heat source

( )2F L∈ Ω  can be uniquely retrieved if

( ) ( )1 2
0 0,  Tu u H H∈ Ω Ω . An iterative algorithm

based on a sequence of well-posed direct problems 
which are solved at each iteration step using the 
boundary element method was also developed for 
finding the source ( )F x , x∈Ω . However, this
algorithm was implemented numerically only for the 
one-dimensional heat equation with xxL = −∂  and 

( )0,Ω =  . Simultaneous identification of the pair

0,F T of source terms in the heat conduction 

equation ( )( ) ( ),t x x
u x u F x tα= +  from final data

overdetermination Tu and the Robin condition

( ) ( ) ( ) ( )[ ]tTtluvtlul x 0,, −=−α , was proposed in 
[18]. 

The source term in [22,24-26] takes the form of 
separated variables, where ( )F x and ( )H t  describe
the time evolution and the spatial distribution of some 
contaminant source, respectively. In particular, the 
heat process of radioactive decay is modelled by the 
equation ( ) ( )t xxu u F x H t= + , where 

( ) ktH t e−=  and 0k >  is the decay rate [22]. Such
source terms also arise as control terms in the context 
of the heat equations. Consequently, identifying 
space dependent or time dependent sources is crucial 
in addressing environmental issues, which served as 
the motivation for proposing the following problem. 
Both types of problems have been extensively 
studied over the past decades, with the uniqueness of 
solutions already established in the existing 
literature. Inverse source problems involving 
multiplicatively separable sources for parabolic and 
hyperbolic equations with constant coefficients were 
initially investigated in [24-26].  

Note that although inverse source problems for 
parabolic equations are usually moderately ill-posed 
[27], their degree of ill-posedness could be quite 
different [23,28]. The degree of ill-posedness of 
inverse source problems for the advection-diffusion 
equation was investigated numerically using singular 
value decomposition of the input-output operators in 
[28]. This analysis showed that the degree of ill-
posedness of recovering ( )F x for constant
coefficients is essentially higher than that of the 
inverse problem of recovering ( )F x  from final data
overdetermination.  
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Mathematical modelling of the direct problem 
Let 0T > , a const= , α  be a twice piecewise 

continuously differentiable function on [ ]l,0  such

that ( ) 0xα >  for all [ ]lx ,0∈ , and 

( ) ( )1 0,g t H T∈ . Unless stated otherwise, the
space and the time-dependent sources are bounded 
functions such that ( ) ( )lLxF ,02∈  and

( ) ( )2 0,H t L T∈ respectively. Moreover, their 
Lebesgue measures are strictly positive, i.e. 

( )( )supp 0Fµ >  and ( )( )supp 0Hµ > . For the

given known sources ( )F x  and ( )H t , the problem
(1) is referred to as the direct problem. Using
separation of variables in (1), we look for a solution
to this direct problem of the form:

( ) ( ) ( )
1

, k k
k

u x t u t X x
∞

=

=∑ , ( ), Tx t ∈Ω ,     (3) 

where the functions ( )kX x  are solutions of the 
following boundary eigenvalue problem: 

( ) ( )( ) ( ) ( ) ( )
( ) ( ) ,00

,,0,
=′=

∈=′+′′−
lXX

lxxXxXaxXx λα (4)

corresponding to the eigenvalues kλ , 1k ≥ . 
The differential operator

( )d d dx a
dx dx dx
α= − +L in (4) is not self-adjoint

since, in general, ( )a xα′≠  for ( )lx ,0∈ . However,
multiplying through by the weight function 

( ) ( )
( )

p x
x

x
σ

α
= , where 
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exp
x a s

p x ds
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α
α
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factor, the system (4) takes the following self-adjoint 
form: 

( ) ( )( ) ( ) ( ) ( )
( ) ( ) .00

,,0,
=′=

∈=′′−
lXX

lxxXxxXxp λσ (5)

Since p , p′  and σ  are continuous on [ ]l,0 , and

( ) 0p x >  and ( ) 0xσ >  on [ ]l,0 , the boundary
eigenvalue problem (5) is a regular Sturm-Liouville 
problem [29]. Therefore, the eigenvalues are real, 
positive, simple and can be ordered such that 

1 20 λ λ< < < , with lim nn
λ

→∞
= ∞ . In addition, the 

corresponding eigenfunctions form a complete 
orthogonal family of 𝐿𝐿𝐿𝐿𝜎𝜎𝜎𝜎2 (0, 𝑙𝑙𝑙𝑙) = 
= �𝑓𝑓𝑓𝑓: [0, 𝑙𝑙𝑙𝑙] → 𝑅𝑅𝑅𝑅:∫ 𝑓𝑓𝑓𝑓2(𝑥𝑥𝑥𝑥)𝜎𝜎𝜎𝜎(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 < ∞𝑙𝑙𝑙𝑙

0 �, i.e. 

�𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘 ,𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗�𝐿𝐿𝐿𝐿𝜎𝜎𝜎𝜎2 (0,𝑙𝑙𝑙𝑙)
= 

= � 𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘(𝑥𝑥𝑥𝑥)𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗(𝑥𝑥𝑥𝑥)𝜎𝜎𝜎𝜎(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥
𝑙𝑙𝑙𝑙

0
= �𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘 ,𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗�𝐿𝐿𝐿𝐿𝜎𝜎𝜎𝜎2 (0,𝑙𝑙𝑙𝑙)

𝛿𝛿𝛿𝛿𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗 , 

and can be normalized to yield a family { } 1k k
χ

≥
 of 

orthonormal functions in ( )lL ,02
σ such that 

( ) kjlLjk XX δ
σ

=
,02, . 

Moreover, for each function ( )lLf ,02
σ∈ , the 

series ( ) ( )∑
∞

=1
,02,

k
klLk xf χχ

σ
converges to f  in

( )lL ,02
σ .

Let us now represent the source term ( )F x  in

terms of the normalized eigenfunctions { } 1k k
χ

≥
,

( ) ( ) ( )∑
∞

=

=
1

,02,
k

klLk xFxF χχ
σ

.        (6) 

REMARK. If ( )lHF ,01∈  and satisfies the
same boundary conditions, i.e. ( ) ( ) 00 =′= lFF ,
then the series expansion (6) converges absolutely 
and uniformly to F  in ( ]l,0 .

By formally substituting the series (3) into 
equation (4) and using the series expansion (6), we 
find that the coefficients ( )ku t  must satisfy the
following initial value problem 

( ) ( ) ( ) ( )
( ) .00

,,
,02

=

=+′

k

lLkkkk

u

tHFtutu
σ

χλ
(7)
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Hence, the coefficients ( )ku t  of (3) can be
uniquely determined 

( ) ( ) ( ) ( )∑ ∫
∞

=

−−=
1 0

,0
,, 2

k

t
st

lLkk dsesHFtu kλ

σ
χ  (8) 

and the generalized solution of the direct problem (1) 
becomes 

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 𝑡𝑡𝑡𝑡) = 
= ∑ ⟨𝐹𝐹𝐹𝐹,𝜒𝜒𝜒𝜒𝑘𝑘𝑘𝑘⟩𝐿𝐿𝐿𝐿𝜎𝜎𝜎𝜎2 (0,𝑙𝑙𝑙𝑙)𝜒𝜒𝜒𝜒𝑘𝑘𝑘𝑘(𝑥𝑥𝑥𝑥)∫ 𝐻𝐻𝐻𝐻(𝑠𝑠𝑠𝑠)𝑒𝑒𝑒𝑒−𝜆𝜆𝜆𝜆𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡

0
∞
𝑘𝑘𝑘𝑘𝑘𝑘 .  (9) 

 Reconstruction method for Inverse Source 
Problem 

In the inverse source problem considered here, 
the space-dependent source ( )F x  in the advection-
diffusion equation (1) needs to be recovered from the 
time-dependent Dirichlet boundary data (2) 
supposing that the function ( )H t  is known. As
explained in [30], the solution to this inverse problem 
is unique only if additional constraints are imposed 
on the source function ( )F x .

In order to reconstruct the unknown space-
dependent source ( )F x , we have to find the

coefficients ( )lLkk FF
,02,

σ
χ= , 1k ≥ , of the

following series expansion 

( ) ( )∑
∞

=

=
1

,,
k

kk tFtlu ψ     (10) 

where 

( ) ( ) ( ) ( )∫ −−=
t

st
kk dsesHlt k

0

λχψ , 1k ≥ ,      (11) 

from boundary measured data (2). Since H  is 
considered to be bounded on [ ]0,T , and the

eigenfunctions kχ  and the coefficients kF  are also
bounded, the terms of the series (10) in absolute value 
tend to zero faster than 1

kλ
− , i.e. 

|𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘𝜓𝜓𝜓𝜓𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)| = 

= |𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘𝜒𝜒𝜒𝜒𝑘𝑘𝑘𝑘(𝑙𝑙𝑙𝑙)| �� 𝐻𝐻𝐻𝐻(𝑡𝑡𝑡𝑡 𝑡 𝑠𝑠𝑠𝑠)𝑒𝑒𝑒𝑒−𝜆𝜆𝜆𝜆𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠
𝑡𝑡𝑡𝑡

0
� ≤ 

≤  𝐶𝐶𝐶𝐶5 � 𝑒𝑒𝑒𝑒−𝜆𝜆𝜆𝜆𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠
𝑡𝑡𝑡𝑡

0
≤
𝐶𝐶𝐶𝐶5
𝜆𝜆𝜆𝜆𝑘𝑘𝑘𝑘

, 𝑘𝑘𝑘𝑘 𝑘 1. 

Moreover, the eigenvalues kλ  for 1k ≥  are 
asymptotically quadratic with respect to k . Thence, 
we can truncate the series (10) and approximate 
( )tlu ,  by the sum of a finite and sufficiently large

number K  of initial terms  

( ) ( ).,
1
∑
=

≈
K

k
kk tFtlu ψ     (12) 

Through this approach, we reduce the inverse 
problem to a finite dimensional one, specifically the 
identification of the K  coefficients kF  in (12) based 
on the given boundary data (2). Consequently, 
Tikhonov regularization is employed, and we aim to 
determine the unrestricted minimum of the functional 

𝐽𝐽𝐽𝐽𝛽𝛽𝛽𝛽
(𝑘)(𝐹𝐹𝐹𝐹) =

1
2
‖𝑢𝑢𝑢𝑢(𝑙𝑙𝑙𝑙, 𝑡𝑡𝑡𝑡) 𝑡 𝑔𝑔𝑔𝑔𝜀𝜀𝜀𝜀(𝑡𝑡𝑡𝑡)‖𝐿𝐿𝐿𝐿2(0,𝑇𝑇𝑇𝑇)

2 +
𝛽𝛽𝛽𝛽
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2
∑ 𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘2𝐾𝐾𝐾𝐾
𝑘𝑘𝑘𝑘𝑘𝑘 ,      (13) 

where β  is the regularization parameter and it 
should be chosen as a good compromise between 
fitting the measured boundary data and guaranteeing 
the stability of the solution. To find the minimizer 

KRF ∈ , we set all first partial derivatives of the 
functional (13) to zero, i.e. 
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Hence, the following necessary minimality 
conditions are obtained 

( )

( ) ( )

( ) ( )

1

1 0

0

0

TK

k k j
kj

T

j j

J
F t t dt

F

g t t dt F

β

β

=

∂
= Ψ Ψ −

∂

− Ψ + =

∑ ∫

∫
, 

for all 1, ,j K=  .     (14) 

The system of linear equations (14) can be 
expressed under the matrix form as 

( ) ( )
K

β εβ+ =A I F b ,        (15) 

where the entries of the K K× matrix A  and of the 
right-hand side vector KRb∈  are given by 

( ) ( )
0

T

jk j kA t t dt= Ψ Ψ∫ , 1, ,j K=  ,

1, ,k K=  , (16) 

( ) ( )
0

T

j jb g t t dtε ε= Ψ∫ , 1, ,j K=  . (17)

If ( ) KR∈βF  is the solution of equation (15) for
an optimal value of the regularization parameter β , 
which can be determined by the L-curve criterion, 
then the approximate solution of recovered problem 
is 

( ) ( ) ( ) [ ]∑
=

∈≈
K

k
kk LxxFxF

1
.,0,χβ      (18) 

Results and Discussion 

The first numerical examples consider 
reconstructions of several smooth space-dependent 

sources for different given time-dependent sources, 
and linear and non-linear diffusion coefficients. In 
order to quantify the quality of reconstructed sources, 

recF , the following 2L -relative errors were computed 
in each case 

( ) ( ) ( )

( ) ( )

2

2

rec 0,1

0,1

L
F

L

F x F x

F x
ε

−
=  .       (19) 

EXAMPLE 1. We attempt to reconstruct first 
smooth space-dependent sources of the form  

( )
2

1
1

1

2

2
2

2

exp

exp

x xF x A

x xA

δ

δ

  − = − +    
  − + −    

  (20) 

for a known time-dependent source 
( ) ( )expH t t= − . We consider both linear and non-

linear diffusion coefficients with various parameter 
choices, as follows: 

i) 1 1A = , 1 0.55x = , 1 0.3δ = , and 2 0A = . 
The numerical reconstructions of the space-
dependent source obtained in this case for 
( ) 0.5x xα = +  and different choices of the

coefficient a , 1a =  and 0.5a =  are given in Figure 
1 and Table 1.  

ii) 1 0.5A = , 12 =A , 1 0.25x = , 2 0.75x = , 

1 2 0.11δ δ= =  and 1a = . Reconstruction results for 
different expressions of the spatially varying 
diffusion coefficients, ( ) 0.5x xα = +  (linear) and

are ( ) 21x xα = +  (non-linear), are presented in
Figure 2 and Table 2. 
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(a) 1a = , %0=ε (d) 0.5a = , %0=ε

(b) 1a = , %2=ε (e) 0.5a = , %2=ε

(c) 1a = , %5=ε  (f) 0.5a = , %5=ε

Figure 1 – Reconstruction of the space-dependent source ( )F x  for Example 1 i)

and various noise levels in the data, { }0,2,5 %ε ∈ : 1a =  in (a), (b) and (c); 0.5a = in (d), (e) and (f).



86

Int. j. math. phys. (Online)                                       International Journal of Mathematics and Physics 16, №1 (2025)

Inverse Source Problem for advection-diffusion equation from boundary measured data

Table 1 – Regularization parameter values  β and relative errors Fε  in the reconstruction of the space-dependent source ( )F x  for

Example 1 i) and various noise levels in the data, { }0,2,5 %ε ∈

1=a 5.0=a
ε  0% 2% 5% 0% 2% 5% 
β 8105 −⋅ 7103 −⋅ 7108 −⋅ 8103 −⋅ 8106 −⋅ 7105 −⋅
Fε 057.0 1161.0 12.0 0503.0 1101.0 0.119

Figure 2 – The 2L -norm of the difference between the reconstructed space-dependent sources

for K  and 1K −  eigenpairs used in numerical implementation, ( )rec, KF x

and ( )rec, 1KF x− , respectively, for Example 1 i), 0% errors in the data and 1a = .

(a) ( ) 0.5x xα = + (b) ( ) 21x xα = +

Figure 3 – Reconstruction of the space-dependent source ( )F x
for Example 1 ii) and data with 2% errors. 
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Table 2 – Regularization parameter values β  and relative errors Fε  in the reconstruction of the space-dependent source ( )F x  for

Example 1 ii) and various noise levels in the data, { }0, 2,5 %ε ∈ .

( ) 0.5x xα = + ( ) 21x xα = +
ε  0% 2% 5% 0% 2% 5% 
β  9102 −⋅ 8105 −⋅ 8109 −⋅ 8103 −⋅ 8103 −⋅ 8109 −⋅

Fε 1830.0 2011.0 2694.0 3418.0 0.3681 3902.0

EXAMPLE 2. We reconstruct a smooth space-
dependent source of the form (20) with the same 
parameter choices as in Example 1 i), i.e. 1 1A = , 

1 0.55x = , 1 0.3δ =  and 2 0A = , but in this case

( ) ( )sinH t tπ= . Figure 4 and Table 3 contain the
results of numerical reconstructions of the space-
dependent source obtained for two different 
choices of the coefficient a , 1a =  and 0.5a =

and a linear diffusion coefficient, ( ) 0.5x xα = +
. Results for a non-linear spatially varying 
diffusion coefficient, ( ) 21x xα = + , are found in
Figure 5 and Table 4. A space-dependent source 
of the form (20) with the same parameter choices 
as in Example 1 ii) could not be recovered for the 
time-dependent source considered in this 
example. 

(a) 1a = (b) 0.5a =

Figure 4 – Reconstruction of the space-dependent source ( )F x

for Example 2, ( ) 0.5x xα = + , and data with 2% errors.

Table 3 – Regularization parameter values β  and relative errors Fε  in the reconstruction of the space-dependent source ( )F x  for

Example 2, ( ) 0.5x xα = +  and various noise levels in the data, { }0, 2,5 %ε ∈ .

1=a 5.0=a
ε  0% 2% 5% 0% 2% 5% 
β  8109 −⋅ 74 10−⋅ 75 10−⋅ 8109 −⋅ 73 10−⋅ 7105 −⋅

Fε 063.0 092.0 0987.0 0667.0 0.0752 1378.0
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(a) 1a =  (b) 0.5a =

Figure 5 – Reconstruction of the space-dependent source F (x)
for Example 2, α ( ) =1x x+ 2 , and data with 2% errors.

Table 4 – Regularization parameter values β  and relative errors Fε  in the reconstruction of the space-dependent source ( )F x  for

Example 2, ( ) 21x xα = +  and various noise levels in the data, { }0, 2,5 %ε ∈ .

1=a 5.0=a
ε  0% 2% 5% 0% 2% 5% 
β  8101 −⋅ 8101 −⋅ 8109 −⋅ 8101 −⋅ 8101 −⋅ 8105 −⋅

Fε 0804.0 0996.0 2142.0 0.1 0.0872 0.1639 

EXAMPLE 3. We consider the following space-
dependent sources which both satisfy the boundary 
conditions ( ) ( )0 1 0F F ′= = :

i) ( ) ( )2F x x x= − , (21)

ii) ( ) ( )2sinF x xπ= . (22)
Reconstructions of the source in i) and two

different known time-dependent sources, 

( ) ( )expH t t= −  and ( ) ( )sinH t tπ= , are shown
in Figure 6 and Table 5, and in Figure 7 and Table 6, 
respectively. The numerical recoveries of the source 
in ii) for ( ) ( )expH t t= −  are presented in Figure 8
and Table 7. In all these numerical experiments, the 
diffusion coefficient was considered to be linear and 
of the form ( ) 0.5x xα = + .
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(a) 1a = (b) 0.5a =

Figure 6 – Reconstruction of the space-dependent source ( )F x

for Example 6 i), ( ) 0.5x xα = + , ( ) ( )expH t t= − , and data with 2% errors.

Table 5 – Regularization parameter values β  and relative errors Fε  in the reconstruction of the space-dependent source ( )F x  for

Example 3 i), ( ) 0.5x xα = + , ( ) ( )expH t t= − , and various noise levels in the data, { }0,2,5 %ε ∈ .

1=a 5.0=a
ε  0% 2% 5% 0% 2% 5% 
β  8109 −⋅ 7101 −⋅ 6103 −⋅ 6105 −⋅ 6105 −⋅ 6109 −⋅

Fε 02.0 0212.0 053.0 0068.0 0127.0 0173.0

(a) 1a = (b) 0.5a =

Figure 7 – Reconstruction of the space-dependent source ( )F x

for Example 3 i), ( ) 0.5x xα = + , ( ) ( )sinH t tπ= , and data with 2% errors.
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Table 6 – Regularization parameter values β  and relative errors Fε  in the reconstruction of the space-dependent source ( )F x  for

Example 3 i), ( ) 0.5x xα = + , ( ) ( )sinH t tπ= , and various noise levels in the data, { }0,2,5 %ε ∈ .

1=a 5.0=a
ε  0% 2% 5% 0% 2% 5% 
β  6105 −⋅ 6105 −⋅ 6105 −⋅ 6105 −⋅ 6105 −⋅ 6105 −⋅

Fε 0299.0 0352.0 0368.0 0115.0=Fε 0292.0=Fε 0208.0=Fε

(a) 1a = (b) 0.5a =

Figure 8 – Reconstruction of the space-dependent source ( )F x

for Example 6 ii), ( ) 0.5x xα = +  ( ) ( )expH t t= − , and data with 2% errors.

Table 7 – Regularization parameter values β  and relative errors Fε  in the reconstruction of the space-dependent source ( )F x  for

Example 3 ii), ( ) 0.5x xα = + , ( ) ( )expH t t= − , and various noise levels in the data, { }0,2,5 %ε ∈ .

1=a 5.0=a
ε  0% 2% 5% 0% 2% 5% 
β  85 10−⋅ 85 10−⋅ 75 10−⋅ 82 10−⋅ 82 10−⋅ 81 10−⋅

Fε 0.0727 0.0793 0.1305 0.0463Fε = 0.0652Fε = 0.0910Fε =

Conclusion 

Overall, the reconstructions of space-dependent 
sources ( )F x  obtained for a smaller value of the
coefficient a  (i.e. 0.5a = ) are comparable to, but 
slightly better than, the results obtained for the larger 
value 1a = . Better and more stable source 
identifications were also achieved in the case of the 
linear diffusion coefficient ( ) 0.5x xα = +  and

more importantly, in the case when the source term 
( )F x  satisfies the same boundary conditions as the

eigenfunctions of the Sturm-Liouville problem (5) 
(i.e. ( ) ( )0 1 0F F ′= = ). To conclude, our numerical
experiments seem to suggest that the proposed 
reconstruction method works rather well for 
identifying smooth space-dependent sources albeit 
satisfying the natural boundary conditions 
( ) ( )0 1 0F F ′= =  and ( )0 0H ≠ .
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