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Abstract. In the paper the steady flow of a viscous incompressible fluid past a circular cylinder with at-
tached splitter plates is considered. The mathematical representation of the problem takes the form of an 
external boundary value problem for the stream function. To solve the problem, a numerical method com-
bining the R-functions and the nonlinear Galerkin method is used. The R-functions method is employed to 
construct a problem solution structure that exactly satisfies all the boundary conditions of the problem and 
has the required behavior at infinity. The Galerkin method is then applied to approximate the undetermined 
components of this structure, ensuring accuracy and efficiency in the solution process. A series of computa-
tional experiments was conducted to investigate the flow past a single circular cylinder and past a circular 
cylinder with triangular and rectangular splitter plates at various Reynolds numbers. For the case of a single 
cylinder, a quantitative error analysis confirms the convergence of the numerical method, with relative er-
rors dropping below 1% when using a moderate number of basis functions. The computational cost remains 
practical, with each solution obtained in approximately 11 minutes on a standard workstation. Drag and lift 
coefficients are computed for the single-cylinder case, allowing for quantitative assessment of aerodynamic 
performance and validation of the numerical model against known reference data. The influence of split-
ter plate geometry on the flow structure is explored through visualizations, highlighting changes in vortex 
patterns and symmetry. The proposed approach demonstrates strong numerical accuracy and computational 
robustness for the single-cylinder case and offers a flexible framework for studying external viscous flows 
with complex boundary configurations.
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Abstract. In the paper the steady flow of a viscous incompressible fluid past a circular cylinder with
attached splitter plates is considered. The mathematical representation of the problem takes the form of an
external boundary value problem for the stream function. To solve the problem, a numerical method combining
the R-functions and the nonlinear Galerkin method is used. The R-functions method is employed to construct
a problem solution structure that exactly satisfies all the boundary conditions of the problem and has the
required behavior at infinity. The Galerkin method is then applied to approximate the undetermined
components of this structure, ensuring accuracy and efficiency in the solution process. A series of
computational experiments was conducted to investigate the flow past a single circular cylinder and past a 
circular cylinder with triangular and rectangular splitter plates at various Reynolds numbers. For the case of a
single cylinder, a quantitative error analysis confirms the convergence of the numerical method, with relative 
errors dropping below 1% when using a moderate number of basis functions. The computational cost remains
practical, with each solution obtained in approximately 11 minutes on a standard workstation. Drag and lift 
coefficients are computed for the single-cylinder case, allowing for quantitative assessment of aerodynamic
performance and validation of the numerical model against known reference data. The influence of splitter
plate geometry on the flow structure is explored through visualizations, highlighting changes in vortex patterns
and symmetry. The proposed approach demonstrates strong numerical accuracy and computational robustness
for the single-cylinder case and offers a flexible framework for studying external viscous flows with complex
boundary configurations.
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Introduction 

Mathematical modeling and numerical analysis 
play a significant role in investigating and solving 
applied problems by simulating the behavior of 
complex systems in diverse areas. They are used in 
hydrodynamics, thermal energy, chemical kinetics, 
biomedicine, material science, engineering, and even 
medical diagnostics [1–4].  

One of these important areas is the dynamics of 
viscous fluids, which studies fluid flow behavior and 
is relevant to numerous industrial and environmental 
applications. Accurate modeling of viscous fluid 
behavior, particularly around bodies of various 
shapes, is essential for understanding processes such 
as vortex formation, wake dynamics, and flow 
stability. These insights are fundamental to 
advancing technologies in engineering, energy, and 
other fields [5–8]. 

It is well known that at low Reynolds numbers 
the flow around a body remains symmetrical, with no 
detachment zone forming in the wake region. As the 
Reynolds number increases, secondary vortices 
appear behind the body. These vortices grow in size 
due to the energy of the flow and after reaching a 
certain (critical) value eventually detach from the 
body. When flow conditions favor the formation of a 
well-defined vortex street, a cross flow appears 
directly behind the body, with a component 
perpendicular to the direction of the incoming flow. 
Installing a splitter plate into the near trace created by 
the body can effectively suppress or reduce the 
formation of such vortex streets, stabilizing the flow. 

Splitter plates, often called as wake stabilizers, 
are introduced downstream of a body. They are 
passive means to regulate various aspects of wake 
formation and mitigate vortex shedding. The use of 
these plates makes it possible to change the pressure 

(Received 20 January 2025; revised 25 May 2025; accepted 1 June 2025)

https://orcid.org/0000-0003-3552-3795


93

International Journal of Mathematics and Physics 16, №1 (2025)      Int. j. math. phys. (Online)

S.M. Lamtiuhova

drop characteristics. The resistance to the body can 
be reduced when the flow reattaches downstream, 
thereby making it streamlined. A variety of splitter 
plate configurations can be used, each tailored to 
specific flow control objectives. Shrivastava et al. [9] 
investigated the flow around a circular cylinder and 
cylinders with triangular and rectangular wake 
splitter plates using an incompressible PISO finite 
volume method. Their approach employed a non-
staggered grid arrangement and a second-order 
upwind scheme for the convective terms.  

This paper aims to apply the R-functions and 
nonlinear Galerkin method for mathematical 
modeling of a nonlinear steady-state problem of 
viscous incompressible fluid flow past a circular 
cylinder with triangular and rectangular splitter 
plates. The problem has symmetrical properties and 
can be simplified to a two-dimensional form, making 
the stream function more convenient to use than the 
fluid velocity components. The methods for solving 
external problems for the equation related to the 
stream function have not been sufficiently developed, 
primarily because of the equation's high order, 
nonlinearity and the unbounded domain in which it is 
considered. By employing the constructive tools 
from R-functions theory, it becomes possible to 
accurately account for the geometry of the domain 
and all boundary conditions, including the condition 
at infinity. 

The R-functions method is a powerful tool for 
solving a wide class of problems in mathematical 
physics and mechanics, including problems in 
hydrodynamics. This method, originally introduced 
by the Ukrainian mathematician V. L. Rvachov, 
relies on the use of special functions that preserve the 
logical structure of geometric domains and physical 
conditions [10, 11]. In hydrodynamics, it is used to 
model fluid flows in channels and reservoirs with 
complex geometries, solve free liquid surface 
problems, analyze heat transfer in pipes with intricate 
cross-sections, and study magnetohydrodynamic 
flows.  

Maksymenko-Sheiko et al. examined conjugate 
boundary-value problems related to heat transfer in 
fuel cartridges containing fuel rods, emphasizing 
cases where a viscous incompressible fluid moves 
through channels with non-standard cross-sections, 
flowing around a rods bundle [12, 13]. It was also 
investigated situations involving asymmetrical rod 
arrangements [14] and explored a variety of finned 
fuel elements surfaces including polyzonal finning of 
the shell [15]. Podhornyj et al. [16] considered 

stationary fluid flow through a piecewise 
homogeneous porous medium, assuming the 
applicability of Darcy's law. The mathematical 
modeling of a quasi-stationary mixing process of a 
viscous mixture was investigated by Gybkina et al. 
[17] using a combination of the superposition
principle, the R-functions method, and the Ritz
variational method. In the context of external flow
problems around bodies, the R-functions method has
been applied in [18–21], considering cases such as
flow around bodies of revolution in spherical
coordinates, flow past cylindrical bodies without
splitter plates, and mass exchange problems.

The problems of flow around bodies attract 
considerable attention due to their wide range of 
industrial and engineering applications. Examples of 
interesting applications of flows past cylinders of 
various shapes include flows around tall chimneys, 
cooling towers, offshore structures, pipelines, 
bridges, rod bundles in heat exchangers, and flame 
stabilizers in high-speed combustion chambers. 

Problem statement 

Consider the steady, uniform flow of viscous 
incompressible fluid past a cylindrical body, with a 
velocity at infinity U∞ . The cross-section of the body 
is a finite domain Ξ  with a piecewise-smooth 
boundary ∂Ξ . Let Ω  be complement of Ξ . It is 
clear that ∂Ω = ∂Ξ . It is convenient to consider such 
flows in a cylindrical coordinate system ( r , ϕ , z ). 
Assume that all quantities describing the flow are 
independent of the coordinate z  and that the third 
component of the fluid velocity is equal to zero, i.e. 

0zV = . The stationary Navier-Stokes equations then 
take the following form [6]: 
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where: 
2 2
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r r r r
∂ ∂ ∂

∆ = + +
∂ ∂ ∂ϕ

 is Laplace operator; 

rV , Vϕ  are fluid velocity components; 

P  is pressure; 
1Re−ν =  is kinematic viscosity coefficient; 

Re  is Reynolds number; 
ρ  is fluid density. 
The system of equations (1) consists of nonlinear 

partial differential equations for the unknown 
functions rV , Vϕ , P . 

The third equation in (1), the continuity equation, 
is integrated by introducing the stream function ψ  
according to formulas [5, 22]: 

1
rV

r
∂ψ

=
∂ϕ

, V
rϕ

∂ψ
= −

∂
. 

Elimination of the pressure from the two 
remaining equations via cross-differentiation leads to 
a nonlinear fourth-order equation for the stream 
function ( , )rψ = ψ ϕ  [22]: 

2 1 ( ) 1 ( )
r r r r
∂ψ ∂ ∆ψ ∂ψ ∂ ∆ψ

ν∆ ψ = −
∂ϕ ∂ ∂ ∂ϕ

 in Ω ,   (2) 

where: 
2

2 2

1 1r
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∂ ∂ψ ∂ ψ ∆ψ = + ∂ ∂ ∂ϕ 

; 

( )2∆ ψ = ∆ ∆ψ .

Equation (2) should be complemented with 
boundary conditions on ∂Ω  and the condition at 
infinity (for r →+∞ ) [5, 6]: 

0
∂Ω

ψ = , 0
∂Ω

∂ψ
=

∂n
,          (3) 

1lim sin
r

r U−
∞→+∞

ψ = ϕ ,            (4) 

where: 
n  is external normal to ∂Ω . 

Method of solving the problem (2) – (4) 
As proven in [19], for any sufficiently smooth 

functions 1Φ  and 2Φ  (with 1
1 0r−Φ ⋅ →  as 

r →+∞ ), the boundary conditions (3) and the 
condition at infinity (4) are exactly satisfied by a 
function of the form: 

2 2
0 1 2( ) (1 )M M Mψ = ω ψ +Φ +ω −ω Φ , 

where: 
2

0 sinRU r
r∞

 
ψ = − ϕ 

 
 is the solution to the 

problem of flow past a circular cylinder of radius R  
by an ideal fluid (the cylinder of radius R  is fully 
contained within the streamlined body); 

1 exp , 0 ;
( )

1, ( const 0),
M M

M M
f M

M M

ω − ≤ ω<ω = ω = ω−
 ω ≥ = >

      (5) 

where: 
( , )rω ϕ  is the function that satisfies the 

following conditions:  

a) ( , ) 0rω ϕ >  in Ω , b) ( , ) 0r
∂Ω

ω ϕ = , 

c) 1
∂Ω

∂ω
= −

∂n
. 

The function (5) differs from unity only in a finite 
annular region { }0 ( , )r M≤ ω ϕ <  adjacent to the
contour ∂Ω , as it satisfies the following conditions: 

1) 0Mω >  in Ω , 2) 0M ∂Ω
ω = , 

3) 1M

∂Ω

∂ω
= −

∂n
, 4) 1Mω ≡ , if M Mω ≥ .
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Thus, the function (5) allows for calculations 
within the finite region. 

The functions 1Φ  and 2Φ  are approximated 
using the nonlinear Galerkin method [8] in the 
following form: 

1
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is a complete set of particular solutions to the 
equation 2 0u∆ =  for the region outside a finite-
radius cylinder; 
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is a complete set of particular solutions to the 
equation 2 0u∆ =  for the domain { }( , )r Mω ϕ < .

Hence, the problem's solution is approximated in 
the form: 
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The complete sequence of functions for the whole 
plane is expressed as: 

{ } { }2 2( , ) ( , ) ( , ), ( , )(1 ( , )) ( , )i M k M M jr r r r r rϕ ϕ = ω ϕ ϕ ϕ ω ϕ −ω ϕ τ ϕ .        (6) 

The nonlinear Galerkin method [8] is employed 
to determine the unknown coefficients 

kα  1( 1, 2,..., )k m=  and jβ 2( 1, 2,..., )j m=  by 

enforcing the orthogonality condition of the residual 
to the first N  ( 1 2N m m= + ) elements of the 
sequence (6): 

( ) ( )2 1 1 , 0N NN N
N ir r r r

∂ ∆ψ ∂ ∆ψ ∂ψ ∂ψ
ν∆ ψ − + ϕ = ∂ϕ ∂ ∂ ∂ϕ 

, 1,i N= . 

The resulting system consists of nonlinear 
equations, each being a quadratic function of the 
unknown coefficients kα  and jβ . The system can be 
solved using the Newton method. For the initial 
approximation, a set of kα  and jβ , corresponding to 
the solution of the Oseen problem, or for large 
Reynolds numbers, a solution obtained from smaller 
Reynolds numbers, should be selected. 

Results and discussions 

A computational experiment was conducted for 
the problems of flow past a single circular cylinder 
and past a circular cylinder with triangular and 

rectangular splitter plates at 1U∞ = , 5M = , 

1 8m = , 2 14m = , Re 5;10;15= . 
In the case of flow past a single circular cylinder 

2 2 1x y+ = , the normalized equation of the 
boundary [10, 11] takes the following form:  

2 21( , ) (1 ) 0
2

x y x yω = − − = .

Figure 1 illustrates the streamline contours of the 
approximate solution for the steady flow past a 
circular cylinder at various Reynolds numbers 
( Re 5;10;15= ). The contours remain symmetric 
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with respect to the horizontal axis across all tested 
Reynolds numbers, but a clear evolution of the wake 
structure is observed. As Re increases, the separation 
region behind the cylinder becomes more elongated, 
and closed recirculation zones form in the near wake. 
This behavior reflects the growing influence of 
inertial forces over viscous effects. Figure 2 
complements the picture by presenting the velocity 
vector fields superimposed on the streamline 
contours. At Re 5= , the flow is smooth with only a 
short wake, while at Re 10=  and especially at 
Re 15= , recirculation zones develop behind the 
cylinder, becoming more prominent and spatially 
extended. The results are consistent with expected 
trends for laminar flow past bluff bodies, where 
increasing Reynolds number leads to stronger 

velocity gradients and the onset of vortex-like 
behavior. 

For two successive approximate solutions 
constructed with 1 2kN m m= +  basic functions by 
Galerkin method the following calculation errors 
were evaluated:  

– absolute deviation:

1
max ( , ) ( , )

k kk N Nr r
+

∆ = ψ θ −ψ θ , 

– 2L -norm: 
1

2 ( )
( , ) ( , )

k kN N L
r r

+ Ω
∆ = ψ θ −ψ θ , 

– relative error:

1
2

2
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( )

( , ) ( , )

( , )
k k

k

N N L

N L

r r

r
+ Ω

Ω

ψ θ −ψ θ
δ =

ψ θ
.

(a)  (b)   (c) 

Figure 1 – The streamline contours for the problem of flow past a circular cylinder at 
(a) Re 5= , (b) Re 10= , (c) Re 15= .

 (a)  (b)  (c) 

Figure 2 – Detailed visualizations of the streamline contours and velocity vector fields 
behind the circular cylinder at (a) Re 5= , (b) Re 10= , (c) Re 15=
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Table 1 presents the computational errors at 
5M =  for pairs of approximate solutions computed 

with different values of kN . The numerical results 
demonstrate the convergence properties of the 
Galerkin method applied to the problem of viscous 
flow past a circular cylinder. The analysis of 
computational errors confirms that increasing the 
number of basis functions 1 2kN m m= +  improves 
the accuracy of the approximate solutions. 

It is observed that using 22 basis functions yields 
sufficiently accurate results for all tested Reynolds 
numbers, with relative errors dropping to around or 
below 1%. Increasing the number of basic functions 
to 30 leads to only marginal improvements in 
accuracy. Therefore, from a computational efficiency 
perspective, the choice of 22 basis functions provides 
a good balance between accuracy and computational 
cost. The computational cost remains moderate, with 
each solution requiring approximately 11 minutes on 

a standard workstation (Intel i5 processor, 8 GB 
RAM). For higher Reynolds numbers, however, a 
larger number of basis functions may be necessary to 
maintain the same level of accuracy due to the 
increased complexity of the flow field. 

These findings confirm that the Galerkin method 
offers a convergent and computationally feasible 
approach for solving this class of fluid dynamics 
problems, with controllable accuracy through a 
moderate number of basis functions. 

The obtained results show good agreement with 
experimental data available in the literature [7], as 
well as with the findings of other researchers [6, 23, 
24] and with those presented in [20], which were 
derived using the R-functions, successive 
approximations, and the Galerkin method. The 
secondary vortices behind the body emerge as the 
Reynolds number reaches 5, consistent with 
previously known results and highlighting the 
efficiency of the developed numerical method. 

 
 

Table 1 – Computational errors at 5M =  for successive Galerkin approximations with increasing number of basic functions kN . 
 

kN , 1kN +  Type of error Re = 5 Re = 10 Re = 15 

1 2 4 6N = + =  

2 4 10 14N = + =  

k∆  00,12 10×  00,25 10×  00,37 10×  
∆  00,26 10×  00,49 10×  00,68 10×  
δ  9,5%  18,3%  25,4%  

2 4 10 14N = + =  

3 8 14 22N = + =  

k∆  10,55 10−×  00,20 10×  00,35 10×  
∆  10,99 10−×  00,32 10×  00,55 10×  
δ  3,7%  11,6%  18,9%  

3 8 14 22N = + =  

4 12 18 30N = + =  

k∆  10,11 10−×  10,70 10−×  00,14 10×  
∆  20,12 10−×  20,54 10−×  10,10 10−×  
δ  0,05%  0,2%  0,4%  

 
 
Having demonstrated that the Galerkin solution 

is sufficiently accurate and computationally efficient, 
we now apply it to compute the drag and lift 
coefficients. These quantities are of primary interest 
in external flow problems and serve as key metrics 
for validating numerical predictions against 
experimental or benchmark data. 

Drag DF  and lift LF  forces, acting from the fluid 
side to the cylinder, can be calculated using the 
formulas [5, 8, 25]: 

 
( cos sin )D rr r

S

F dsϕ= −τ ϕ+ τ ϕ∫ , 

( sin cos )L rr r
S

F dsϕ= −τ ϕ− τ ϕ∫ , 

 
where: 

S  is the surface of the cylinder; 

rrτ , rϕτ  are stresses on the cylinder surface: 
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According to the Navier–Stokes equations (1): 
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. 

Then the pressure can be found by integrating the 
following expression: 

p pdp dr d
r
∂ ∂

= + ϕ
∂ ∂ϕ

. 

The drag DC  and lift LC  coefficient can be 
defined as [5, 8, 25] 

21
2

D
D

FC
AU∞

=
ρ

, 
21

2

L
L

FC
AU∞

=
ρ

, 

where: 
A  is the projected area. 

To compare our obtained drag coefficients, let us 
consider the folowing empirical expressions for the 
drag coefficient of flow past a cylinder [26]: 

Wieselsberger-Lamb: 
8 ,

Re(2,002 lg Re)DC π
=

−

Clift: 
0,68724(1 0,15Re )

ReDC +
= , 

Munson: 
5,93 1,17

ReDC = + .

The obtained approximate drag coefficients have 
been compared with the empirical correlations 
mentioned above, as well as with the numerical 
results reported by other researchers, as presented in 
Table 2. 

The comparison of drag coefficients obtained in 
the present study with well-known empirical 
correlations demonstrates the validity and accuracy 
of the developed numerical model in the low 
Reynolds number regime. At Re 5= , the drag 
coefficient from the present work shows good 
agreement with the values predicted by 
Wieselsberger-Lamb and Clift, indicating that the 
model correctly captures the viscous-dominated flow 
behavior. For Re 10= , the computed drag 
coefficient closely matches the empirical estimate 
given by Clift, and for Re 15= , it aligns well with 
the estimate provided by Munson. This consistency 
further supports the robustness and reliability of the 
numerical approach used in this study. 

Table 2 – Drag coefficients for flow past a single circular cylinder at Re 5;10;15=

Authors Re = 5 Re = 10 Re = 15 
Wieselsberger-Lamb 8,80 2,50 1,46 

Clift 6,98 4,15 3,14 
Munson 3,82 3,05 2,70 

Perumal [23] - 3,21 - 
Silva [27] - 2,81 - 

Shrivastava [9] 5,92 - - 
Mehmet [28] - - 3,08 
Present work 7,95 4,05 2,74 

Notably, the Wieselsberger-Lamb formula tends 
to overestimate the drag at low Reynolds numbers, 
while the Munson and Clift correlations provide 

more consistent results across the considered range. 
The comparison also shows a general trend of 
decreasing with increasing Reynolds number, as 
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expected due to the diminishing relative effect of 
viscosity. 

In addition, the lift coefficient 0LC =  computed 
in the present study was found to be zero, which is 
consistent with the symmetric geometry and 
boundary conditions of the problem. This result 
further confirms the physical correctness of the 
numerical solution and the ability of the method to 
preserve expected flow symmetries. 

Overall, the present numerical results exhibit 
good agreement with both empirical models and 
available data in the literature, confirming the 
applicability of the method for simulating creeping 
and transitional flows around a circular cylinder. 

Consider the problem of flow past a circular 
cylinder 2 2 1x y+ =  with a triangular splitter plate 
(Figure 3). 

Figure 3 – Circular cylinder  
with a triangular splitter plate 

Let us construct a normalized boundary equation 
using the R-functions system 0R  [10, 11, 18]: 

x x≡ − , 2 2
0x y x y x y∧ ≡ + − +

2 2
0x y x y x y∨ ≡ + + + .         (7) 

The following regions are accepted as primitive 
regions: 

– the interior of a circle with a radius of 1 and

centered at the origin: ( )2 2
1

1 1 0
2

x y Σ = − − ≥ 
 

, 

– the half-plane below the line 8 2 0x y+ − = :

( )2
1 2 8 0
65

x y Σ = − − ≥ 
 

, 

– the half-plane above the line 8 2 0x y− − = :

( )3
1 2 8 0
65

x y Σ = − + ≥ 
 

, 

– the half-plane to the right of the line
1
2

x = : 

4
1 0
2

x Σ = − ≥ 
 

. 

Then ( )1 2 3 4Ω = Σ ∨ Σ ∧Σ ∧Σ  and the equation

of the boundary of the region Ω  is determined by the 
equation ( , ) 0x yω = , where 

2 2

0 0 0
1 2 8 2 8 1( , )

2 265 65
x y x y x yx y x

  − − − − − +     ω = ∨ ∧ ∧ −               
.            (8) 

The function (8) is positive within the domain Ω  
and negative outside of Ω . If a function that is 
positive in the exterior of the finite domain  
Ω  is required, one should use the function 

( , )x y−ω .
Figure 4 illustrates the streamline contours of the

approximate solution for the case of flow past a 
circular cylinder with a triangular splitter plate. 
Figure 5 provides a more detailed view, combining 
these contours with the velocity vector fields behind 
the body. The presence of the triangular splitter plate 

significantly modifies the near-wake structure. 
Across all considered Reynolds numbers, the flow 
retains its symmetry, but the splitter effectively 
confines and redirects the flow in the wake region. As 
a result, the separated region behind the cylinder 
becomes narrower and more confined, indicating a 
stabilizing effect of the plate and a potential reduction 
in unsteady vortex formation. 

Consider the problem of flow past a circular 
cylinder 2 2 1x y+ =  with a rectangular splitter plate 
(Figure 6). 
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 (a)  (b) 

(c) 

Figure 4 –The streamline contours for the problem of flow past a circular cylinder 
with a triangular splitter plate at (a) Re 5= , (b) Re 10= , (c) Re 15=

  (a)    (b)  (c) 

Figure 5 – Detailed visualizations of the streamline contours and velocity vector fields 
behind the circular cylinder with a triangular splitter plate at 

(a) Re 5= , (b) Re 10= , (c) Re 15=
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Figure 6 – Circular cylinder with a rectangular splitter plate 

To construct a normalized boundary equation 
[10, 11, 18] using the R-functions system 0R  (7), we 
considered the following primitive regions: 

– the interior of a circle of radius 1 centered at the

origin: ( )2 2
1

1 1 0
2

x y Σ = − − ≥ 
 

,

– the half-plane below the line
1 0
8

y − = : 

2
1 0
8

y Σ = − ≥ 
 

,

– the half-plane above the line
1 0
8

y + = : 

3
1 0
8

y Σ = + ≥ 
 

,

– the half-plane to the right of the line
1
2

x = : 

4
1 0
2

x Σ = − ≥ 
 

, 

– the half-plane to the left of the line 2x = :
( )5 2 0xΣ = − ≥ . 

Then ( )1 2 3 4 5Ω = Σ ∨ Σ ∧Σ ∧Σ ∧Σ  and the 

equation of the boundary of the region Ω  is 
determined by the equation ( , ) 0x yω = , where 

[ ]

2 2

0

0 0 0

1( , )
2

1 1 1 2
8 8 2

x yx y

y y x x

 − −
ω = ∨ 

 
      − ∧ + ∧ − ∧ −            

.  (9) 

The constructed function (9) is also positive 
within the domain Ω  and negative outside Ω . 

The streamline contours of the obtained 
approximate solution for the case of flow past a 
circular cylinder with a rectangular splitter plate, as 
well as detailed pictures of these contours and 
velocity vector fields behind the body, are presented 
in Figures 7 and 8. Compared to the triangular 
configuration, the rectangular plate more effectively 
suppresses wake expansion, especially at Re=15, 
where the flow behind the cylinder remains relatively 
attached and streamlined. The splitter reduces the 
tendency of the flow to separate sharply, thereby 
weakening recirculation and mitigating vortex 
development.
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(a)  (b) 

(c) 

Figure 7 – The streamline contours for the problem of flow past a circular cylinder 
with a rectangular splitter plate at (a) Re 5= , (b) Re 10= , (c) Re 15=

Conclusions 

The paper presents the application of the R-
functions and nonlinear Galerkin method to the 
mathematical modeling of the nonlinear stationary 
problem of viscous incompressible fluid flow past a 
cylindrical body. The use of R-functions enables the 
construction of an approximate solution in the form 
of a single analytical expression that inherently 
satisfies the boundary conditions and captures the 
geometry of the domain precisely. Numerical 
solutions were obtained for the nonlinear stationary 
problem of flow past both a single circular cylinder 
and a circular cylinder with triangular and 
rectangular splitter plates, for different Reynolds 
numbers. For the case of a single cylinder, 
convergence analysis demonstrated that accurate 
results can be achieved with a moderate number of 
basis functions. The observed relative errors fell 

below 1%, while the computational cost remained 
practical as each simulation requiring approximately 
11 minutes on a standard workstation. Drag and lift 
coefficients were computed for the single-cylinder 
configuration and found to be in good agreement with 
established empirical data. This serves as quantitative 
validation of the method's accuracy and robustness in 
the low Reynolds number regime. For configurations 
with splitter plates, qualitative analysis revealed that 
the addition of the plate results in an effect similar to 
elongating the body in the direction of the flow. 
Elongated bodies, with their largest dimension 
oriented parallel to the main flow, tend to cause 
relatively narrow separated wakes, without 
generating a significant vortex wake. By installing 
splitter plates of various shapes and lengths in the 
near wake created by the body, it becomes possible 
to control the flow, for instance, to prevent the 
formation of a vortex street. Future studies could be 
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extended to cases with higher Reynolds numbers, 
more complex geometries, and unsteady flow 
regimes. Such extensions will help evaluate the 

generality and stability of the proposed approach 
across a broader class of fluid dynamics 
problems. 

 (a)  (b)   (c) 

Figure 8 – Detailed visualizations of the streamline contours and velocity vector fields 
behind the circular cylinder with a rectangular splitter plate at  

(a) Re 5= , (b) Re 10= , (c) Re 15=
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