Soliton solutions of a generalized Klein–Gordon equation with power-law nonlinearity via the first integral method

  • S. Subhaschandra Singh Department of Physics, Imphal College, Imphal-795001, Manipur, India

Abstract

This paper studies solitary wave solutions of a generalized nonlinear Klein-Gordon (KG) equation with power-law nonlinearity via the so-called first integral method. Using the method, some soliton solutions of the equation are obtained. The method is hereby shown to be an efficient and reliable mathematical tool for solving many nonlinear evolution equations arising in a number of problems in science and engineering.

 
 


 
 
 


undefined
 
undefined
 
 
 
 
 


 
 
 
Звуковая функция ограничена 200 символами

 

 
Настройки : История : Обратная связь : Donate
Закрыть


Published
Dec 29, 2018
How to Cite
SINGH, S. Subhaschandra. Soliton solutions of a generalized Klein–Gordon equation with power-law nonlinearity via the first integral method. International Journal of Mathematics and Physics, [S.l.], v. 9, n. 2, p. 116-121, dec. 2018. ISSN 2409-5508. Available at: <http://ijmph.kaznu.kz/index.php/kaznu/article/view/268>. Date accessed: 21 mar. 2019.