3D modeling high temperature flows in the combustion chambers of the power plants

Authors

  • S.A. Bolegenova Al-Farabi Kazakh National University, IETP, al-Farabi 71, 050040 Almaty, Kazakhstan
  • A.S Askarova Al-Farabi Kazakh National University, IETP, al-Farabi 71, 050040 Almaty, Kazakhstan
  • A. Bekmukhamet Al-Farabi Kazakh National University, IETP, al-Farabi 71, 050040 Almaty, Kazakhstan
  • S. Bolegenova Al-Farabi Kazakh National University, IETP, al-Farabi 71, 050040 Almaty, Kazakhstan
  • V. Maximov Al-Farabi Kazakh National University, IETP, al-Farabi 71, 050040 Almaty, Kazakhstan
  • Sh. Ospanova Al-Farabi Kazakh National University, IETP, al-Farabi 71, 050040 Almaty, Kazakhstan
  • R. Manabayeva Al-Farabi Kazakh National University, IETP, al-Farabi 71, 050040 Almaty, Kazakhstan
  • S. Utelov Al-Farabi Kazakh National University, IETP, al-Farabi 71, 050040 Almaty, Kazakhstan

Keywords:

fuel, turbulent flow, numerical method, boiler, burner, high-energy fuel

Abstract

In this paper the results obtained by the numerical method of modelling of Ekibastuz coal burning in BKZ-420 combustion chamber of Kazakhstan’s coal-fired Power Plant are presented. They are devoted to the numerical simulation of combustion processes in the furnace boiler BKZ-420. Boiler’s steam generating capacity 420 T/h. Boiler has six vertical pulverized coal burners arranged in two levels with three burners on the front wall of the boiler. High ash, low-grade coal from Ekibastuz burned in the furnace. Its ash content is 39 %, volatile – 24 %, humidity – 5 %, highest calorific value is 16 750 kJ/kg. In this research the main harmful gases distribution characteristics of the concentration of carbon oxides (CO and CO2), nitrogen dioxide (NO2), and oxygen O2 are shown.

References

1. Messerle V.E., Lavrishcheva Ye.I., Karpenko E.I., et al. Plasma-supported coal combustion in boiler furnace // IEEE Transactions on Plasma Science. – 2007. – Vol. 35, No 6. – P.1607-1616.
2. Ustimenko A.B., Askarova A.S., Messerle V.E., Nagibin A. Pulverized coal torch combustion in a furnace with plasma-coal system //
82 International Journal of Mathematics and Physics 7, №1, 73 (2016) 3D modeling high temperature flows in the combustion chambers of the power plants Journal of Thermophysics and Aeromechanics. – 2010. – Vol.7, No 3. – P. 435-444.
3. Karpenko E.I., Messerle V.E. et al. Plasma enhancement of combustion of solid fuels // Journal of High Energy Chemistry. – 2006. – Vol. 40, No 2. – P.111-118.
4. D Askarova A.S., Lavrichsheva Ye., Leithner R., Müller H., Magda A. Combustion of low-rank coals in furnaces of Kazakhstan Coal-firing Power Plants // VDI Berichte. – 2007. –No 1088. – P. 497-502.
5. Vockrodt S., Leithner R., Schiller R., Buchman M. Firing technique measures for increased efficiency and minimization of toxic emissions in Kasakh coal firing // VDI BERICHTE. – Dresden. – 1999. – Vol. 1492. – P. 93-97.
6. B Abbas T., Costen P.G. and Lockwood F.C. Solid Fuel Utilisation: From Coal to Biomass Twenty-Sixth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh. – 1996. – 3041 p.
7. Bolegenova S.A., Messerle V.E., Maksimov V.Yu. et al. Numerical Simulation of the Coal Combustion Process Initiated by a Plasma Source // Journal of Thermophysics and Aeromechanics. – 2014. – Vol. 21, No 6. – P.747-754.
8. Leithner, R., Müller, H. CFD studies for boilers Second M.I.T. Conference on Computational Fluid and Solid Mechanics – Cambridge. – 2003. – 172 p.
9. Karpenko Yu.E., Karpenko E.I., Askarova A.S. et al. Mathematical modeling of the processes of solid fuel ignition and combustion at combustors of the power boilers // 7-th International Fall Seminar on Propellants, Explosives and Pyrotechnics. Theory and Practice of Energetic Materials. – China. – 2007. – Vol. 7. – P. 672-683.
10. L Buchmann M.A., Askarowa A. Structure of the flame of fluidized-bed burners and combustion processes of high-ash coal // VDI BERICHTE. – 1997. – Vol. 1313. – P. 241-244.
11. Bekmukhamet A., Beketayeva M.T., Sh.S., Gabitova Z.K. et al. Numerical modeling of turbulence characteristics of burning process of the solid fuel in BKZ-420-140-7c combustion chamber // International Journal of Mechanics. – 2014. – Vol.8. – P.112-122.
12. Askarova A.S., Maksimov V.Yu., et al. Computational method for investigation of solid fuel combustion in combustion chambers of a heat power plant // Journal of High Temperature. – 2015. – Vol.53,No 5. – P. 751-7570
. 13. Bolegenova S.A., Bekmuhamet A., et al. Using 3d modeling technology for investigation of conventional combustion mode of bkz-420-140-7c combustion chamber // Journal of Engineering and Applied Sciences. – 2014. – Vol. 9. – P.24-28.
14. Messerle V.E., Maksimov V.Yu., et al. Numerical simulation of pulverized coal combustion in a power boiler furnace // Journal of High Temperature. – 2015. – Vol.53,No 3. – P.445-452.
15. Safarik P., Askarova A.S., et al. Numerical Modeling of Pulverized Coal Combustion at Thermal Power Plant Boilers // Journal of Thermal Science. – 2015. – Vol. 24,No 3. – P.275-282.
16. Loktionova I.V., Messerle V.E., et al. 3D modeling of the two-stage combustion of Ekibastuz coal in the furnace chamber of a PK-39 boiler at the Ermakovo district power station // Journal of Thermal engineering. – 2003. – Vol. 50, No 8. – P.633-638.

Downloads

Published

2016-10-07

How to Cite

Bolegenova, S., Askarova, A., Bekmukhamet, A., Bolegenova, S., Maximov, V., Ospanova, S., Manabayeva, R., & Utelov, S. (2016). 3D modeling high temperature flows in the combustion chambers of the power plants. International Journal of Mathematics and Physics, 7(1). Retrieved from https://ijmph.kaznu.kz/index.php/kaznu/article/view/163