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Abstract. This paper studies solitary wave solutions of a generalized nonlinear Klein-Gordon (KG) 
equation with power-law nonlinearity via the so-called first integral method. Using the method, some 
soliton solutions of the equation are obtained. The method is hereby shown to be an efficient and reliable 
mathematical tool for solving many nonlinear evolution equations arising in a number of problems in 
science and engineering. 
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Introduction 
 
The Klein-Gordon (KG) equation is an important 

equation in theoretical physics especially in quantum 
field theory (QFT) and relativistic quantum 
mechanics. It also appears in nonlinear optics and 
plasma physics. The Klein-Gordon equation often 
arises in physics in linear as well as nonlinear forms. 
In the past, the equation had been extensively studied 
by many physicists and applied mathematicians with 
the help of a variety of methods. This paper deals 
with solving a particular form of the generalized 
Klein-Gordon (GKG) equation with full nonlinearity 
via the first integral method [1 – 7].  

The generalized Klein-Gordon equation [8 – 10] 
that is to be studied in this paper is written in the form 

 
��� �  ����� +  �� �  ��� +  ������ = 0,    (1) 
 

where the dependent variable �(�, �) represents a 
wave profile, x and t are spatial and temporal 
variables, �, �, �, � are real-valued constants and � =
2, 3, 4, . .. 

 
Reduction to Nonlinear Ordinary Differential 

Equation (NLODE) 
 
To reduce Eq.(1) to a nonlinear ordinary 

differential equation (NLODE), we put 

 
�(�, �) = �(�), � = � � ��           (2) 

 
where v is a constant , generally the constant speed of 
wave propagation.  

Now, from eq.(2), we have 
 

��� =  ��  �
��

���  , ��� =  ���
���  . 

 
Substituting these derivatives in Eq.(1), we 

obtain 
 

(�� �  ��) ���
��� +  �� �  ���  +  ������ = 0.   (3) 

 
Thus, Eq.(1) is reduced to a NLODE. 
Let us further simplify the reduced NLODE by 

putting 
 �(�) =  ��(�)� �

���.                   (4) 
 
Then, we have 
 

 ��
�� =  �

��� ����
���  ��

��                   (5) 
and 
 

 �
��

��� =  ���
(���)�  �

����
���  ���

���� +  �
��� �

���
���  ���

���  .  (6) 
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Substituting Eqs.(4) to (6) in Eq. (3), we obtain 
 

(� − �)(�� − ��)� ���
��� − 

 

− (� − �) (�� −  ��) ���
�� �

�
+ 

 
+ (� − �)� ���  −  (� − �)� ���  +  

 
+(� − �)� ���  = 0.                       (7) 

 
Solving Eq. (7) and using Eqs. (2) and (4), we can 

obtain the solution �(�, �) of Eq. (1). 
In this paper, solutions of Eqs. (7) are to be 

obtained via a method known as the first integral 
method. 

 
Algorithm of the First Integral method 
 
Before applying the first integral method in 

finding the solutions of Eq. (7), we introduce an 
algorithm of the method as in the following. 

Let us consider a general NLPDE in the form 
 
 �(�, ��, �� , ��� , ���, ��� , ���� , . . . ) =  0,  (8) 
 

where � = �(�, �) is its solution, � and � represent 
the spatial and the temporal variables and F 
represents a polynomial in u and its partial 
derivatives. Here, the subscripts denote 
differentiations with respect to them. 

Let us introduce the transformations, 
 

 � = �(�, �) = �(�), � = � − ��,            (9) 
 

where v is a constant to be determined latter. 
Now, we have,  
 

�� =  ��
�� =  ��

��  , �� =  ��
�� = −� ��

��  , 
 

��� =  ���
��� =  ���

��� , ��� =  ���
�� �� =  −� ���

���  , 
 

��� =  ���
��� =  ��  ���

���  , ���.              (10) 
 
Using Eqs. (9) and (10), we can reduce Eq. (8) to 

a nonlinear ordinary differential equation (NLODE) 
of the form 

 

�(�, ��, ���, ����, . . . ) = 0             (11) 
 

where the primes denote derivatives with respect to 
the same variable (�) such that  
�� =  ��

��  , ��� =  ���
���  , ���. and �(�, ��, ���, . . . )  

denotes another polynomial in U and its derivatives 
with respect to �. 

This is exactly the way by which Eq. (1) was 
reduced to Eq. (7). 

Now, Let us suppose that the solution of the Non 
Linear Ordinary Differential Equation (NLODE) 
(11) can be expressed as 

 
 �(�) = �(�).                        (12) 

 
We further introduce the following new variables 
 

�(�) = �(�), �(�) =  ��(�) = 
 

= ��(�) =  ��
�� =  ��

��                   (13) 
 

leading to the plane autonomous system 
 

 
 �(�) = ��(� ), ��(� ) =  �( �(�), �(� ) ) ,  (14) 
 

 
where H is a polynomial in X and Y. 

If we can find two first integrals to the system of 
equations in (14) under the same conditions, then the 
analytic solutions of equations (14) can be obtained 
directly. However, in general, it is really difficult for 
us to realize this even for one first integral, because 
for a given plane autonomous system, there exists 
neither a systematic theory that can tell us how to find 
its first integrals nor a logical way for telling us what 
these first integrals are. We will apply the Division 
Theorem to obtain a first integral to the system of 
equations (14) which reduces eqn. (11) to a first order 
integrable ODE. An exact solution of eqn. (8) is then 
obtained by solving this ODE. For convenience, let 
us recall the division theorem for two variables in the 
complex domain C [w, z]. 

Division Theorem: For two polynomials P(w, z) 
and Q(w, z) in a complex domain C [w, z], if P(w, z) 
is irreducible in C[w, z] and if Q(w, z) vanishes at all 
zero points of P(w, z), then there exists another 
polynomial G(w, z) in C[w, z] such that Q(w, z) = 
P(w, z) G(w, z). The division theorem follows 
immediately from Hilbert – Nullstellensatz theorem 
of commutative algebra.  
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Application of the First Integral method in 
solving the Generalized Klein-Gordon equation 

 
In this section, the first integral method is applied 

in finding soliton solutions of Eq. (7) and hence of 
Eq. (1). 

In Eq. (7), let us put  
 

�(�) = �(�), �(�) = ��(�) =  ��
�� ,        (15a) 

 

��(�) =  ��
�� =  (� − 2)

(� − 1) (��)�

� + 

 

+ (� − 1)
(�� − ��) ��� −  ��� +  ���� = 

 

= (� − 2)
(� − 1) 1

� �� + 

 
+  (���)

(�����) ��� −  ��� +  ����.             (15b) 
 
Further, let us introduce another new variable � 

such that 
�� = � �� . 

 
Then, Eqs.(15) yield 
 

��
�� = ��, ��

�� =  � − 2
� − 1 �� + 

 
+ ���

�����  ���� −  ��� +  ����.             (16) 
 
We suppose that �(�) and �(�) are nontrivial 

solutions of Eq. (16) and �( �(�), �(�) ) =
 ∑ ��(�) ��(�)�

���  is an irreducible polynomial in 
the complex domain ���, �� such that 

 
 ���(�), �(�)� =  ∑ ��(�) ��(�)�

��� = 0, (17) 
 

where ��(�) (� = 0, 1, 2, �, . . . � − 1, �) are 
polynomials in X and ��  ≠ 0. 

Here, Eq.(17) is called the first integral to the 
system of Eqs.(16). 

By division theorem, there exists a polynomial 
�(�) + ℎ(�)� in the complex domain ���, �� such 
that 

��
�� =  ��

��  ��
��  +  ��

��  ��
�� = 

 

=  ��(�) + ℎ(�)�� ∑ ��(�)�
��� ��(�).   (18) 

 
Now, using Eqs.(16), (17) and (18) we write  
 

� ���(�) � ����
�

���
+ 

 
+ ∑ ���(�) ����  ����

��� �� +  ���
�����  ���� −�

���
 ��� +  ����� =  

 

=  � �(�) ��(�)
�

���
 �� +  � ℎ(�) ��(�) ����

�

���
 . 

 
 
From the above equation, equating the 

coefficients of �� (� = � + 1, �, . . . �, 2, 1, 0) from 
both sides, we obtain 

 
� ��� (�) =  ℎ(�) ��(�) − � (���)

(���) ��(�),  (19a) 
 

� ����� (�) = �(�) ��(�) + ℎ(�) ����(�) − 
 

−  (���)(���)
���  ���� (�),            (19b) 

 
 

� ��� (�) = �(�) ��(�) + ℎ(�) ��(�) − 
 

− 2(� − 2)
� − 1  ��(�) − 

 
− �(���)

�����  ��(�) ���� −  ��� +  ����,   (19c) 
 
 

� ��� (�) = �(�) ��(�) + ℎ(�) ��(�) − 
 

− � − 2
� − 1 ��(�) − 

 
− �(���)

�����  ��(�) ���� − ��� + ����,      (19d) 
 
 

� ��� (�) = �(�) ��(�) + ℎ(�) ��(�)  − 
 

− �(���)
�����  ��(�)���� −  ��� +  ����,      (19e) 
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��(�) � − 1
�� − ��  ���� −  ��� +  ���� = 

 
=  �(�) ��(�).                     (19f) 

 
Since ��(�) is a polynomial in X, we deduce 

from Eq.(19a) that ℎ(�) = �(���)
���  . 

For simplicity, we take ��(�) = 1. We can find 
the degrees of �(�), ��(�), ��(�), ���. by balancing 
of degrees in Eqs.(19). Then, we express these 
functions as polynomials of appropriate degrees in X 
with undetermined coefficients. Substituting such 
polynomials in appropriate equations in (19) and 
equating coefficients of like powers of X from both 
sides of the resulting equation, we can find the 
undetermined coefficients. Thus, we can know the 
exact expressions of ��(�), ��(�), ��(�), ���. 
Substitution of these expressions in Eq.(17) can yield 
the expression(s) for Y. Recalling that � =  ��

�� , we 
can find �(�) �� �(�) on integration. 

Then using Eqs. (2) and (4), we can arrive at �(�) 
and hence at �(�, �). 

In a particular case, let us take � =  1. Then, 
Eqs.(19) yield 

 
 � ��� (�) =  � ℎ(�) −  ���

���� ��(�),       (20a) 
 

 � ��� (�) = �(�) ��(�) + ℎ(�) ��(�) ,     (20b) 
 

��(�) � − 1
�� − ��  ���� −  ��� +  ���� = 

 
=  �(�) ��(�).                       (20c) 

 
Since ��(�) are polynomials in X, we deduce 

from Eq. (20a) that ��(�) is a constant and ℎ(�) =
 ���
��� . For simplicity, we take ��(�) = 1. From 
balancing of degrees in Eqs. (20), we conclude that 
deg��(�)� = ������(�)� = 2. 

We suppose that 
 

 ��(�) =  �� +  ��� +  �� ��           (21) 
 

where ��, �� , �� (��  ≠ 0) are arbitrary constants to 
be determined. 

Substituting the expressions for ��(�) and its 
derivative ��� (�) and also the values of ��(�) and 
ℎ(�) in Eq. (20b), we have 

 
 

��� + 2���� = �(�) + 
 

+ ���
��� ��� +  ��� +  �� �����, �(�) =   

 
= − ���

��� ��  +  �
��� ��� +  �

��� ���� .     (22) 
 
Substituting the expressions for 

��(�), ��(�), �(�) in Eq. (20c), we obtain 
 
���

�����  ���� −  ��� +  ���� =  �− ���
��� ��  +

+ �
��� ��� +  �

��� ����� (�� +  ��� +  �� ��).  
 
Equating coefficients of like powers of X from 

both sides of the above equation, we obtain 
 

 ���
��� ��� = 0,                        (23) 

  
 ���
��� ���� = 0,                      (24) 

 
 �
��� ���� +  �

��� ���  −  �(���)
�����  = 0,         (25) 

 
 ���
��� ���� +  �(���)

�����  = 0,              (26) 
 

 �
��� ���  −  �(���)

�����  = 0 .             (27) 
 
 
From Eq.(23), we obtain �� = 0 and then Eq.(25) 

yields 

 �� =  ∓ (� − 1) � �
�����  .              (28) 

 
Further, from Eq. (27), we have 
 

 �� =  ± (� − 1) � �
� (�����)  .         (29) 

 
Using these values of �� and �� , Eq. (26) yields 

the constraint condition 
 

 � =  � ��

� (���)� .                         (30) 
 
Hence, we write 
 

 �� =  ± �(���)
�(���)  � �

�����  .              (31) 
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Substituting the values of �� � �� and �� in Eq. 
(21), we have 

 

��(�) =  ∓ (� � 1) � �
�� � ��  � ±  

 

± �(� � 1)
�(� � 1) � �

�� � ��  �� .  

                (32) 
As � = 1 and ��(�) = 1 in the present case, Eq. 

(17) yields 
��(�) � � = 0 

 
��� � =  ��

��  =  � ��(�)= 
 

=  ± (� � 1) � �
�� � ��  � ∓ 

 

∓ �(���)
�(���)  � �

�����  �� .                  (33) 

 
Integrating Eq. (33), we obtain the solutions 
 
 

�(�) = �(�) =  ± (� � 1)�
�� ⨯ 

 

⨯  �1 ±  ���� �(���)
�  � �

�����  (� �  ��)��   (34) 

 
and  
 

�(�) = �(�) =  ± (� � 1)�
��  ⨯ 

 

⨯ �1 ± ���� �(���)
�  � �

�����  (� �  ��)��         (35) 

 
 
where �� is an integration constant. 

Choosing �� = 0 and recalling that �(�� �) =
�(�) =  ��(�)� �

��� with � =  � � ��� we obtain kink 
and anti-kink soliton solutions of Eq. (1) as 

 
 

�(�� �) =  � ± (���)�
��  �1 ± ���� �(���)

�  � �
�����  (� � ��)���

�
���

                                   (36) 

 
 

and  
 

 

(�� �) =  � ± (���)�
��  �1 ± ���� �(���)

�  � �
�����  (� � ��)���

�
��� .                                       (37) 

 
 

These solutions are those obtained by Wazwaz 
[11]. 

One can try for solutions with � =  �� �� � which 
will become complicated. Attempts for solutions 
with � � � must be dropped out as algebraic 
equations with degrees greater than or equal to 5 are 
generally not solvable. 

 
Conclusion 
 
In this paper, the first integral method is 

successfully applied in finding exact solutions of 
generalized Klein-Gordon equation. The 
performance of this method is found to be effective 
and reliable. The method can be applied in finding 
exact solutions of many nonlinear evolution 

equations arising in the studies of social dynamics, 
science and engineering. One advantage of the 
method is that it is applicable to both integrable as 
well as non-integrable systems. 
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