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Abstract. In this paper I review in a brief and introductory way some important developments in the 
analysis of the dynamics and statistics of N – dimensional Hamiltonian systems, in which my research 
team and I have played an important role over the last two decades. The results I describe here have 
helped us understand the surprising importance of simple periodic orbits and their local stability 
properties in revealing crucial dynamical and statistical properties of the systems as a whole. This has led 
us to introduce the concepts of “strong” and “weak” chaos that are expected to play a significant role in 
better understanding the complexity of these multi-dimensional systems, which have important 
applications in solid state, field theory, superconductivity and more recently nonlinear optics. 
Key words: N – dimensional Hamiltonian systems, superconductivity, nonlinear optics. 

 
 
Introduction 
 
Let us consider the 2- degree of freedom 

Hamiltonian system: 
� = �� + ��� = 

= �
� ���� + ���) + �

� ��� + ��) + �����            (1) 

 
Its solutions for ε = 0 (the uncoupled case), 

plotted as intersection points on a Poincare surface 
of section of the 4 – dimensional space, are shown 
as a family of smooth closed curves in the graph on 
Figure 1. 

 
 

  
Figure 1 – A surface of section plot on the plane x(tk), px(tk), (every time y(tk)=0).  

All orbits are obtained for the same constant value of the Hamiltonian, H=E)
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It is important to note that in this integrable 
(separable) case, all solutions correspond to periodic 
and quasiperiodic orbits with two frequencies ω1 
and ω2 belonging to the two uncoupled oscillators in 
(1). Thus, if ω1 and ω2 are rationally related, i.e. ω1 / 
ω2 = m/n (m,n positive integers) the corresponding 
closed curves in Figure 1 are filled with periodic 
orbits, while if ω1 / ω2 = irrational, the curves are 
filled by a single initial condition by an orbit that 
never closes and is called a quasiperiodic solution. 

Let us now make ε > 0, e.g. ε=0.02. What we 
discover is remarkable: While many smooth closed 
curves corresponding to ω1 / ω2 = irrational survive, 
those that correspond to ω1 / ω2 = rational have 
disappeared giving their place to chains of islands 
having a stable periodic orbit at their center and a 
chain of “saddle – like” regions where two pointed 
regions meet at an unstable periodic orbit of the 
same period, see Figure 2 below. Now if we 
magnify the region close to one of those unstable 

periodic points shown in Figure 2(a) by an arrow, an 
amazingly complex network of islands, as well as 
small scale chaotic region that we will later identify 
with “weak chaos”, are revealed in Figure 2(b) 
below [1].  

If we now further increase the value of ε to ε = 
0.2, we observe in Figure 3, that the small scale 
chaotic regimes observed near unstable periodic 
orbits (saddle points) of Figure 2 have now grown 
considerably into domains that we will refer to as 
domains of “strong chaos” later in this paper. 
Although we don’t show it here, as one can imagine, 
increasing further the value of ε, the islands of 
stable periodic motion will diminish in size, while 
the strongly chaotic regimes will further increase, 
showing a tendency to occupy most of the available 
phase space. The same effect will occur, if we fix 
the value of ε > 0 and start increasing the total 
energy E at which the surfaces of section are 
computed.

 
 

 
 

(a)                                                                        (b) 
Figure 2 (a) – The surface of section of Figure 1 showing orbit intersections in the plane x(tk), px(tk),   

for ε=0.02. (b) A magnification of the region shown by the arrow in (a), where,   
besides the chains of small islands having stable periodic orbits at their center,  

one observes a region of randomly scattered points which constitute a “weakly chaotic’ domain. 
 

 
Figure 3 – The surface of section of the orbits for ε=0.2 and the same energy value  

E as in Figure 2. Note how the weakly chaotic domains of Figure 2 have grown  
to a much greter size forming regions that we will later  
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Simple periodic orbits, weak and strong 
chaos 

 
We study Hamiltonian dynamical systems of N 

degrees of freedom (dof), in an 2N–dimensional 
phase space of position and momentum coordinates, 
whose equations of motion are written in the form 

 
���
�� = ��

���
, ���

�� = ��
���

, k = 1,2, . . . N,         (2)  
 

where H is the Hamiltonian function. For more 
details on the results that follow in the present paper 
the reader is invited to consult [2]. 

If H does not explicitly depend on the time t, it 
represents a first integral, whose value gives the 
total energy of the system E. We will assume that 
the Hamiltonian can be expanded in power series as 
a sum of homogeneous polynomials of degree m ≥2, 
so that the origin is a stable equilibrium point of the 
system: 

 
� = ��(��, � , ��, ��, � , ��) + 

 
+��(��, . . . , ��)+. . . = �.                    (3) 

 
We now assume that Hm = 0 for all m > 2 and 

that the linear equations resulting from (2) and (3), 
yield a matrix, whose eigenvalues all occur in 
conjugate imaginary pairs, ±iωq, and thus provide 
the frequencies of the so-called normal mode 
oscillations of the linearized system.  

 

�� = � ��

�

���
= �, �� = 1

2 ���� + ������ �,  

� = 1,2, . . . , �,                           (4) 
 

where Pq, Qq are the normal mode coordinates.  
Then, according to a famous theorem by 

Lyapunov, if none of the ratios of these eigenvalues, 
ωj/ωk  is rational, for any j, k = 1,2,…,N, j ≠ k, all 
linear normal modes continue to exist as periodic 
solutions of the nonlinear system.  

If the frequencies for Hm≠0 are close to those of 
the linear modes, the continuation of the linear 
modes are examples of simple periodic orbits 
(SPOs) of the nonlinear system, where all variables  
 

oscillate with the same frequency. We shall mention 
below the spectrum of Lyapunov exponents, and 
will discuss how its properties are connected to the 
emergence of strongly (large scale) chaotic behavior 
in the solutions.  

We will also describe the method of the 
Generalized Alignment Indices GALIk, 
k=1,2,…,2N, which efficiently identify domains of 
chaos and order in N dof Hamiltonian systems and 
2N-dimensional (2N-D) symplectic maps.  

 
Indicators of regular and chaotic dynamics 
 
One of the most important questions in 

Hamiltonian dynamics concerns the connection 
between the local (linear) stability properties of 
simple periodic solutions of Hamiltonian systems, 
with the more “global” dynamics. We will examine 
this question using the one-dimensional lattice (or 
chain) of coupled oscillators called the Fermi Pasta 
Ulam β-model described by the N dof Hamiltonian  

 

� = 1
2 � ���

�

���
+ � 1

2 (���� � ��)�
�

���
+ 

 
+ �

� ∑ (���� � ��)����� = �,                (5) 
 

where xj are the displacements of the particles from 
their equilibrium positions, and pj = dxj /dt are the 
momenta, β is a positive real constant and E is the 
total energy. Let us now consider some examples of 
simple periodic solutions (SPOs), which have well-
defined symmetries and are known in closed  
form: 

(I) the out of phase (pi-mode)  
 

���(�) = ������(�) = ��(�), � = 1,2, . . . , �      (6) 
 

where N is even, under periodic boundary 
conditions; 

(II) the SPO1 mode, where every 2 particles one 
is stationary and those on its either side move out of 
phase; 

(III) the SPO2 mode, where every 3 particles 
one is stationary and the two on either side move out 
of phase both under fixed boundary conditions (fbc). 
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Figure 4 – Examples of SPOs that we have called the Out of Phase (or pi-)   
Mode (above), the SPO1 orbit (middle) and the SPO2 orbit  (below) 

 
 
Applying Lyapunov's Theorem to the FPU 

system we can prove the existence of SPOs as 
continuations of the linear normal modes of the 
system, whose energies and frequencies are  

 

�� =
1
2 ���

� � ��������� 
 

��������� = 2��� � ��
�(���)� ����� = 1�2� � � � � ������ (7)  

 
 It is thus easy to verify that SPO1 and SPO2 

orbits, as NNMs, are identified by the indices q = 
(N+1)/2 and  q = 2(N+1)/3 respectively.  

In fact, it is possible to formulate a semi – 
analytical criterion for “weak” chaos: 

We have verified numerically that the above 
NNMs first destabilize at energy densities of the 
form       

    Ec/N ~ 1/N α, α=1,2, as N→∞.              (8) 
 

In agreement with an analytical criterion by 
Flach and co-workers [3], Ec/N ~ π2/6βN2, we find 
that for α = 2 orbits (like SPO2) instability implies 
“weak” chaos and the breakup of FPU recurrences. 
On the other hand, if α = 1, for which the SPO1 
mode destabilizes we find what we shall later call 
“strong” chaos. Indeed, we believe that (8) may be 
true for other NNM solutions as well, but so far no 
proof of this statement is available. 

Lyapunov exponents and “strong” chaos  
 
Chaotic behavior is usually studied by 

evaluating the spectrum of Lyapunov exponents, Li, 
i=1,….2N, (LEs) L1=Lmax>L2>….>L2N , defined as 
follows: 

 

��� =
1
� ��

�|��(�)|�
�|��(0)|�

������������ ��� 
 

�������� = ��������
���������� = 1�2� � � � �2�               (9) 

 
where ��� represent rates of separation from the 
reference orbit of small deviations ��(�) along the 
2N directions in phase space. If the maximum of 
these exponents Lmax > 0, the orbit is chaotic, while 
if Lmax = 0 the orbit is stable. In the thermodynamic 
limit, where E→∞ and N →∞ (with E/N fixed), the 
Lyapunov spectrum near unstable NNMs tends to a 
smooth curve, see Figure 5(a) above [2]. 

For our two orbits SPO1 and SPO2, at low 
energies when they are unstable, we find that their 
Lyapunov spectra are distinct see Figure 5(b). 
Raising the energy, however, we observe in Figure 
5(c) that the Lyapunov spectra converge to the same 
exponentially decreasing function Li (N) ~ exp(-
αi/N), ,i=1,2,…,N, thus providing evidence that the 
orbits explore the same chaotic region.  
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Figure 5 – (a) The spectrum of  Lyapunov exponents near an out of  phase orbit  

of the β – FPU  model  as E and N grow (E/N=3/4). In (b) and (c)  
the Lyapunov spectra of solutions  starting near unstable SPO1and SPO2  orbits converge,  

as the energy grows from E= 2.1 in (b) to E=2.6 for (c),  
indicating that the chaotic regions about these orbits have merged 

 
 
Beyond Lyapunov exponents: The 

Generalized Alignment Indices (GALI)  
 
As mentioned above, the Lyapunov exponents 

are always computed with respect to a single 
deviation vector from the reference orbit. More than 
a decade ago, however, several researchers [4, 5] 
introduced an alternative approach by defining as 
the GALI indicators quantities which take into 
account simultaneously 2, 3 or more deviations from 
the reference orbit, obtaining thus more 
comprehensive results, enabling us to: (a) detect the 
chaotic nature of the orbits more rapidly than other 
methods and, (b) identify quasiperiodic motion 
providing also the dimension of the torus.  

The GALIk, k = 2, 3,…., N indicators are 
defined, through the evolution of k initially linearly 
independent deviation vectors wi(0), as the volume 

of a k-parallelepiped given by the wedge  
product  

 
����� � �|���(�) � ���(�)�� ���(�)|�� 

�� � ���� � � � � �                          (10) 
 

whose k edges are the unitary deviations ���(�) �
��(�)��|��(�)|�� Thus, it is evident that if at least 
two of the deviation vectors become linearly 
dependent, the volume of the k – parallelepiped 
represented by the wedge product in (10) becomes 
zero, and the GALIk vanishes. Thus, as expected, for 
chaotic orbits, deviation vectors tend to become 
linearly dependent in the direction defined by the 
maximal Lyapunov exponent. As an example of this 
effect, we show schematically in Figure 6 below 
how this happens in the case of the GALI2 indicator
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Figure 6 – Behavior of GALI2 for chaotic motion 
 

 
In fact, one can show analytically that in the 

case of chaotic orbits, all GALIk tend to zero 
exponentially for large t, following a detailed 
asymptotic argument analyzing the quantities (10 ) 
in determinants and keeping the most dominant 
terms as t → ∞ [2]. To see the main idea of how this 
is done, we show in the next subsection that 
GALI2(t) ~ exp[-(σ1 – σ2 )t] →0 , σ1 > σ2 , being 
approximations of the two largest Lyapunov 
exponents L1 > L2 . 

 
Asymptotic analysis of the GALI2 for chaotic 

motion 
 
The evolution of one deviation vector from a 

chaotic orbit can be approximated by the 
expression:  

 

��(�) =���(�)����
��

���
�̂� ≈ 

 
≈ ��(�)�����̂� + ��(�)�����̂�+. ..                (9) 

 
where σ1 > σ2 > … are approximate values of the 
Lyapunov exponents up to the time t of integration.  

Thus, dividing this deviation by its magnitude 
we derive a leading order estimate for w1(t):  

 

�� =
��(�)

�|��(�)|�
= ��(�)�����̂� + ��(�)�����̂�

���(�)� ����
= 

 

= ±�̂� + ��(�)

���
(�)� �

�(�����)���̂�,                (10) 

 
and an analogous expression for w2(t):  

�� =
��(�)

�|��(�)|�
= ��(�)�����̂� + ��(�)�����̂�

���(�)� ����
= 

 

= ±�̂� + ��(�)

���
(�)� �

�(�����)���̂�,             (11) 

 
Taking their cross product gives the following 

result:  
����� = �|��(�) � ��(�)|� ≈ 

 

≈ ����
(�)

��
(�) ± ��(�)

��
(�)�� ��(�����)�,                 (12) 

 
which clearly demonstrates what we referred to 
above as exponential decrease of the GALIs to zero 
as t goes to infinity. 

 
Behavior of GALI2 for regular motion 
 
It is also of great importance to analyze how 

GALIs will behave in time if they represent 
deviations of “ordered” or “regular” orbits, which 
have zero Lyapunov exponents and lie on tori of N – 
dimensional quasiperiodic motion in N dof 
Hamiltonian systems. Remarkably enough, all 
deviation vectors in that case become tangent to the 
torus, and, for a k -dimensional torus, the GALI of 
the associated k linearly independent vectors will 
not go to zero since the volume of the corresponding 
parallelepiped will not vanish (see a pictorial 
representation of this in Figure 7 below in the case 
of a 2 – dimensional torus). 

We now make the following very important 
observation: As we just explained, in the case of  
regular orbits lying on s-dimensional tori, all  
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deviation vectors tend to fall on the tangent space of 
the torus. As a result, if we start with k ≤ s, the 
deviation vectors will remain linearly independent 
on the tangent space of the torus and the GALIk will 
be approximately constant, different from zero.  
Hence, for quasiperiodic motion, we find GALI2(t) ≈ 
const. for all t > 0.  

Now, what is interesting is that if we start with k 
> s deviation vectors, since only s of them will in 
the end be linearly independent, the GALI will 
again go to zero, but this time following a power 
law! Clearly, this will be of great help in identifying 
the actual dimension of the torus, for which no 
other such criteria are available. 

 

 
 

Figure 7 – Behavior of GALI2 for regular motion occurring  
on a 2-dimensional torus. 

 
 
Summarizing, we have shown by asymptotic 

analysis that: (a) for a chaotic orbit, all deviation 
vectors tend to align in the direction of L1 , and all 
GALIk tend to zero exponentially following the law 

 
�����∞ exp (−(�� − �� � �� − �� � � � �� − ��)�) (13)  

 
where Li are the k largest LEs. (b) On the other 
hand, for k > s, all GALIk approach 0 as t →∞ 
following power laws,  
 

�����∞ 1
���� � � � � � �� − �� 

�����
�

��(���) � �� − � � � � ���           (14) 
 

since some deviation vectors will eventually become 
linearly dependent. In Figure 8 below we display 
some applications of the above theory to the study 
of tori in a 2 dof and a 3 dof Hamiltonian system. In 
the former case the tori are 2 – dimensional and for 
this reason GALI2 tends to a constant while higher 
GALIs decay by power laws given by (14), while in 
the latter the tori are 3 – dimensional and, therefore, 
not only GALI2 , but also GALI3 go to zero 
following the power laws (14) presented above.

 
 

 
Figure 8 – The GALI indices for a Hamiltonian system of (a) 2 degrees of freedom 

 and (b) 3 degrees of freedom. In case (a), since only GALI2 is constant the motion lies  
on a 2-dimensional torus, while in (b), where both GALI2 and GALI3 are constant, the torus is 3-dimensional 
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Localization in 1-dimensional lattices 
 
Localization in Fourier space 
 
In 1955, by E. Fermi, J. Pasta and S. Ulam 

(FPU) used the computers available at the Los 
Alamos National Laboratory to integrate a chain of 
31 nonlinear oscillators, coupled to their nearest 
neighbors, and investigate how energy was shared 
by all normal modes of the system. Starting with 

initial conditions placed on the  q=1 linear normal 
mode, they discovered, for small energies, a near-
recurrence to their initial state after relatively short 
times exciting very few other modes, see Figure 9 
(a) (for more explanations, the reader is again 
invited to consult the relevant chapters of [2]). 

This remarkable observation ran contrary to the 
expectation of energy sharing among all modes 
predicted by equilibrium statistical mechanics and 
was termed the “paradox” of FPU recurrences.

  
 

 
 

Figure 9 – (a) Localization in modal space in the form  of FPU recurrences,  
discovered by Fermi Pasta and Ulam, for a lattice of 31 particles  

 
 
"Energy localization” here implies localization 

in Fourier q-modal space, as the FPU recurrences 
were observed when all the energy was placed in the 
q=1 mode.  

Flach and his co-workers, in 2005 [3] introduced 
the concept of q-breathers, as exact periodic 
solutions of the problem. They showed that if we 
excite a single low q-breather mode the total energy 
remains localized only within a few of these low 
frequency modes, also called metastable states or 
natural packets.  

A more complete interpretation of the FPU 
paradox was provided by our group [6], where 
we introduced the concept of q-tori, reconciling 

q-breathers with the metastable packets of low-
frequency modes. Now we shall use the GALI 
indices to study the stability of these q–tori and 
the breakdown of the associated FPU 
recurrences. 

More specifically, in Figure 10 below we show 
that it is indeed possible in an N = 8 dof case to 
study a torus of dimension 2 by selecting initial 
conditions exciting a continuation of 2 linear modes 
(see Figure 10(a)). Then, because this torus is stable, 
its dimensionality for long times is verified by only 
the GALI2 being constant while the higher order 
GALIs decay by algebraic power laws given by (14) 
(see Figure 10(b)). 
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Figure 10 – FPU with 8 particles: (a) Only the E1 and E3 modes are excited.  

Observe that the associated q-torus is 2-dimensional, since (b) only GALI2 =const.  
and all other GALIk decay by power laws 

 
 
On the other hand, if the torus is unstable, and 

initial conditions nearby are going to wander in the 
weakly chaotic region that surrounds it, the GALIs 
are going to show it by falling exponentially to zero. 
In Figure 11(a) below we exemplify this by showing 
the behavior of GALI2 , while all higher order 

GALIs (not shown here) also fall to zero 
exponentially according to the laws (13). Note that, 
if one wanted to study this phenomenon by tracking 
the energies of the two excited modes, he would 
discover it much later in time through the excitation 
of other modes, s shown in Figure 11 (b) 

  
 

 
Figure 11 – FPU with 8 particles and initial conditions near a q=2 torus:  

(a) The evolution of GALI2 shows already at t ≈ 1000 that the orbit diffuses away from the torus weakly chaotically.  
(b) This becomes visible, as the FPU recurrences break down at t ≈ 14000 through the excitation of different modes 

 
 
Localization in configuration space 
 
It is also very interesting to apply the above 

approach to the localization of spatial coordinates in 
nonlinear lattices, through the occurrence of a 
fascinating type of exponentially localized periodic 
oscillations, called discrete breathers [7, 8]. These 
solutions have been verified analytically and 

numerically on a variety of lattices, like the Klein-
Gordon (KG) chain  

 
���� � ���(��) + �(���� � ��� + ����),  

 
�(�) � �

� ��� + �
� ��                    (15) 
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- ∞ < n < ∞ , where V(x) is an on-site potential and  
α > 0 is a coupling parameter. One example of such 
a breather solution is shown here in Figure 12 
below. Expanding in Fourier series, one finds that 

discrete breathers are directly related to homoclinic 
orbits of invertible maps, through which one can 
prescribe a numerical procedure for constructing 
them to arbitrarily high accuracy [7, 8]. 

  
 

 
 

Figure 12 – Localization in configuration  space in the form of a discrete breather  
of a harmonic nearest neighbor chain with on site nonlinear potential of the Klein Gordon type 

 
 
Indeed, keeping only the leading term 

xn(t)=Ancos(ωbt) in such an expansion we obtain the 
map 

���� � ����� � ��� � ������ ,  
 

� � �� � �� � ������,                 (16) 
 
which provides a very good approximation for the 
amplitudes An, as homoclinic orbits lying at the 
intersections of the invariant manifolds of the saddle 
point at the origin of (16), at |C|>2. 

Discrete breathers constitute one more example 
of what we call Simple Periodic Orbits, with all 
particles oscillating with frequency ωb outside the 
phonon band of NNMs. 

An interesting question here would be to 
identify whether discrete breathers are surrounded 
by low-dimensional tori when they are stable. If so, 

it would be pertinent to study the dimensionality of 
these tori and their stability using our GALI indices 
to determine if these localized solutions will 
eventually break down as time evolves. 

As we observe in Figure 13 below, in the case of 
a 31 particle lattice where a stable breather is 
followed for very long times, the oscillations of the 
central particle (larger band in Figure 13(a)), its two 
adjacent particles (middle size band) and the very 
small oascillations of all the others (small size band) 
remain practically constant up to t =1.4x106 time 
units. Using the GALIs, however, one does not need 
to integrate over such extended time intervals. As is 
already evident in Figure 13(b), for times as short as 
t = 104 time units, the stability and dimensionality of 
the breather are detected by the constancy of GALI2, 
and the fact that all other higher order GALIs decay 
by power laws. 

 
 



31A. Bountis

International Journal of Mathematics and Physics 9, №2, 21 (2018)

 

 
 

Figure 13 – (Stable torus): (a) The oscillations of the central three particles  
of a KG chain of N=31 particles do not break down, forming a quasiperiodic breather.  

(b) The torus is 2-dimensional, since only GALI2 remains constant, while all other GALIk decrease by power laws 
 
 

 
Figure 14 – (Unstable torus): (a) The oscillations of the central 3 particles,  

starting further from the breather, appear quasiperiodic for very long times. (b) The solution, however, is chaotic  
and the “torus” eventually breaks down since the GALIs  decay exponentially 

 
 
On the other hand, when we increase the energy 

of the system somewhat, the breather oscillations 
become irregular (see Figure 14 (a)) and the 
breather collapses after t=1.4x106 time units, while 
the GALIs fall exponentially much sooner (see 
Figure 14 (b)), declaring after only a few thousand 
time units that this solution is dynamically unstable 
and will eventually break down! 

 
Complex statistics of chaotic dynamics 
 
To study and understand the statistical 

properties of chaotic behavior in Hamiltonian 
systems, it is important to recall first some basic 
facts of equilibrium thermodynamics also reviewed 
in [9]. As is well-known, in Boltzmann – Gibbs 
statistics, if a system can be at any one of i=1,2,...,W 

states with probability pi , its entropy is given by the 
famous formula  

��� = ��∑ �������
��� , 

under the  constraint  
 

∑ ���
��� = 1,                        (17)  

 
where k is the Boltzmann's constant. The BG 
entropy satisfies the property of additivity, i.e. if A 
and B are two independent systems, their union 
entropy is SBG(A+B) = SBG(A)+SBG(B). At thermal 
equilibrium, and for a continuum set of states 
depending on one variable, x, the probability density 
that optimizes the BG entropy subject to the 
constraints (17), zero mean and variance V is, of 
course, the well-known Gaussian  
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�(�) = ����/��/√��.                  (18) 
 

Another important property of the BG entropy is 
that it is extensive, i.e. that SBG/N is finite in the limit 
N→∞. But, many physically important systems 
governed by long range interactions are neither 
additive nor extensive, like self-gravitating systems 
of finitely many mass points and ferromagnetic spin 
models. For such systems the so-called Tsallis 
entropy has been proposed [9]  

 

�� = � ��∑ ��
��

���
��� , 

under the constraint 
 ∑ ���

��� = 1,                        (19) 
 
depending on an index q. For a continuum set of 
states x, the Tsallis entropy is optimized by the q-
Gaussian pdf  

��(�) = ���
���� = 

 
= �(1 � (1 � �)���)�/(���),                    (20) 

 

where β=1/kT is a free parameter and a > 0 a 
normalization constant. Expression (20) tends to a 
Gaussian, as q → 1 eq →e. The Tsallis entropy is 
not additive, and, in general, non-extensive. It offers 
us the possibility of studying problems whose 
correlations decay not exponentially but by power 
laws, thus implying that the interactions within such 
systems are of the long range type.  

 
The case of multi-degree-of freedom 

Hamiltonian systems  
 
In the realm of multi – dimensional Hamiltonian 

systems analyzed in this paper, there are many 
situations where the dynamics is weakly chaotic and 
may, therefore, possess Tsallis statistics of the type 
described above.  

For example, we have found that, in the β-FPU 
model, near an unstable SPO1 orbit of a 5-particle 
chain, orbits that remain “trapped” for very long 
times in a thin chaotic region (see Figures 15, 16) 
and are described by pdfs of the q-Gaussian type 
with q ≈ 2.8 [11]. 

 
 

 
Figure 15 – Three different orbits with initial conditions very close to an unstable SPO1 orbit  

of the 5 particle FPU-β chain: The black “figure eight” in the middle starts from a distance of 10-7 ,  
the green one  starts within  0.0001 and the red one extending over a much larger region,  

starts within 0.01 from the  saddle point 
 

 
These are what we call quasi-stationary states 

(QSS) of the dynamics. Following these states for 
long times, one typically finds that their pdfs pass 
through QSS described by q-Gaussians of  q > 1, see 

Figure 16 (a,b,d,c), until they finally converge to 
Gaussians with q = 1, when the orbits escape to a 
much larger domain of strong chaos, see Figure 16 
(c,e).
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Figure 16 – Orbits starting at a distance of 1.0*10-7 from the unstable SPO1 orbit,  

integrated for: (a)   t=105 , (b)   t=107  , until they eventually escape in the large chaotic sea (c)  t=108    
(d – f):  Plots of pdfs of position variables for a 5- particle FPU chain  

and initial conditions close to an unstable SPO1 orbit. The QSS observed here are well described  
by q-Gaussians with (d) q = 2.78, then (e) q = 2.48, until the orbit drifts away to a wide chaotic sea  

and the pdfs converge to (f) Gaussians with q=1.05 
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Another example of a weakly chaotic orbit 
located near an SPO2 orbit of a a multi – 
dimensional β – FPU Hamiltonian system has been 

found to “stick” on a low – dimensional torus and 
remain for extremely long times near a type of 
quasiperiodic motion is shown in Figure 17 below

 
 

 
Figure 17 – (a) The dynamics near an SPO2 orbit ``sticks'' to a quasiperiodic torus,  

at least up to t=108 . The weakly chaotic nature of the motion is shown in (b),  
where we have plotted  the 4 largest Lyapunov exponents up to t=10^9.  

Although they all decrease towards zero, at about  t >109 , the largest exponent shows a tendency  
to converge to a positive value, indicating that the orbit is chaotic 

 
 
As Figure 17 demonstrates this orbit is 

dynamically very “stable”, as it remains for very 
long times near a regular quasiperiodic torus. Its 
chaotic nature, however, is clearly exemplified by 
the fact that after nearly t= 108 time units its largest 
Lyapunov exponents stops decreasing towards zero 
and starts to converge to a positive value! This is 
clear evidence that this orbit is not regular and can 

therefore be characterized as weakly chaotic, 
according to the terminology used in this paper. 

The interesting question that arises, therefore, is 
whether a statistical analysis of this orbit also shows 
that this orbit can also be characterized as weakly 
chaotic, by plotting the probability distributions of 
averaged sums of its coordinates, as was done above 
for the orbit shown in Figure 16. 

 
 

 
Figure 18 – Left: The distribution of the normalized sum pdf of the orbit starting near SPO2,  

for a total integration time t=106. Right: Final integration time t =1010.  
The pdf has converged to an almost analytical shape that is close to a q--Gaussian  

with q≈2.769 near the center, and seems to have analytical form 
 

 
Indeed, as is clearly seen in Figure 18, the 

probability density functions (pdfs) associated with 
this orbit are not Gaussian but are well described by 
q- Gaussian distributions of the form (20). The 

remarkable observation we make here is that, after 
1010 time units, the pdfs appear to converge to a 
smooth distribution, that departs from a q- Gaussian 
type at large distances away from its mean value. 
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This type of complexity provides one further 
justification for the title of this paper.  

 
Weak chaos in 2–dimensional area – 

preserving maps 
 
It is instructive to illustrate some of the 

phenomena we have described in this paper on a 2-
dimensional area – preserving map, which 
represents a simple model of a Hamiltonian systems 
of 2 – degrees of freedom. The question we wish to 
address here is whether what we have called strong 
and weak chaos can be observed in systems of low 
dimensions as well. For this reason, we shall 
examine the behavior of a model called the 
McMillan map expressed by the following equations 
mapping the xn, yn plane to itself [11]: 

 
���� � ��,  

 

      ���� � ��� + ����
��� + 1 + ���,       

 
� � �,1,�,�, � ��                       (21) 

 
For ε = 0 this system is integrable as it possesses 

a constant of the motion of the form �� + �� +
���� � ���� � ������ It is also easy to see that it 
also possesses a saddle point at the origin for μ >1. 
When ε > 0 and small (21) becomes non – 
integrable and chaotic orbits are expected to appear 
near its origin forming “figure eight” domains of the 
type shown in Figure 15. What we would like to 
investigate here is whether these orbits also display 
strongly and weakly chaotic properties similar to 
what we found earlier when we were discussing 
multi – dimensional systems.  

The results we obtained in [11] we indeed quite 
interesting: We first noted that for several μ, ε 
values the chaotic orbits wandering around the 
saddle point at (0,0) formed indeed a “figure eight” 
similar to the one of Figure 15 in a generally 

strongly chaotic fashion [11]. In other words, when 
followed for as many as 220 iterations (time units) 
the pdfs produced by averaged sums of the 
coordinates appeared to converge to Gaussian 
distributions.  In other words, the orbits wandered 
around a “figure eight” domain chaotic domain and 
their pdfs passed through a sequence of q-Gaussian 
states, with q > 1, until they become true Gaussians, 
with q = 1. 

However, for certain choices of parameter 
values, the orbits exhibited a remarkable “diffusive’ 
behavior, as they began after a certain time to 
escape from the “figure eight” and wander about in 
the plane along a chaotic boundary surrounding 
chains of islands that encircled the central “figure 
eight” region! This produced a complex pattern of 
chaotic domains in which the orbits wandered about, 
“sticking” often as it were in the vicinity of 
“thinner” chaotic regions surrounding higher order 
saddle points of the map extending over island 
chains of stable periodic orbits of (21) that also 
encircle the origin. It was precisely in these cases 
where we discovered that the pdfs of our chaotic 
orbits began to converge to a true q (>1)-Gaussian, 
for n →∞ , as shown in Figure 19 and Figure 20 
below, thus demonstrating their weakly chaotic 
nature.  

 
The role of Long Range Interactions 
 
As was mentioned earlier, all the results 

described above appear to suggest that the statistical 
properties of chaotic motions in Hamiltonian 
systems must depend on the type of interactions 
characterizing these motions. More specifically, we 
postulated that if these interactions are “short” (e.g. 
exponential) this might account for the strong chaos 
characterizing states that are described by Gaussian 
pdfs. On the other hand, if the interactions are long 
ranged (e.g. decaying by power laws) this would 
entail that the pdfs obtained after sufficiently long 
times would be of the q – Gaussian type.
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Figure 19 – Upper: Diffusive motion of orbits in a thin chaotic layer of the 2-d area – preserving map (21), 
 starting near the unstable fixed point at the origin, and evolving to N=220 iterations 

 

  
 

Figure 20 – The pdfs representing the normalized sum of averages of the xn coordinate of the map,  
for the chaotic orbit of Figure 18 are seen to converge after 220 iterations  

to the q-Gaussian shown here, with q=1.6 
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Thus, to test the validity of the above the above 
conjecture we decided to extend our studies and 
consider a class of N – dimensional Hamiltonians 
that involve Long Range Interactions (LRI) of the 
kind exemplified by the following class of FPU 
models: 

 

� = 1
2 � ���

�

���
+ 1

2 �(���� � �� )�
�

���
+ 

 
+ �

�(�,�) ∑ ∑ (�����)�

�|���|������������ = �(�),    (22) 

 
where b>0 and α ≥ 0 is an important parameter 
introduced to “measure” the length of the 
interactions [12.13]. Note that to keep all energy 
terms in the Hamiltonian extensive, i.e. proportional 
to N, we have introduced before the quartic part of 
the potential the factor 
 

�(�, �) = 1
� � � 1

(� � �)�

�

�����

�

���
= 

 
=  �

� ∑ �����
(���)�    ���� ,                 (23) 

 

What we found was indeed very interesting: 
Noting first that α = ∞ represents the shortest type of 
(nearest neighbor) interactions considered already in 
sections 3 and 4 of this paper, we studied the full 
range of α values all the way down to 0 ≤ α ≤ 1 
representing the regime of the longest type of LRI 
possible. As Figure 21 and Figure 22 below 
demonstrate, as α became smaller than α = 1, a 
surprising phenomenon of “regularization” of the 
dynamics was observed (see Figure 21): The 
maximum Lyapunov exponent λ > 0 was seen to 
decrease to values that seem to tend to zero!  In 
other words, a kind of weakly chaotic behavior was 
discovered, showing that LRI has a “stabilizing” 
effect on the dynamics.  

To see whether this “regularization” effect 
extends also to the statistical properties of the 
motion we studied the pdfs of sums of averaged 
momenta of our chaotic orbits and discovered that 
these also tended to become closely approximated 
by q – Gaussian distributions in the LRI regime 0 ≤ 
α ≤ 1 (see Figure 22). On the other hand, in the 
regime α > 1 where the interactions may be 
characterized of “shorter” type, the same pdfs 
quickly converged to q – Gaussians, demonstrating 
that the nature of the dynamics is characterized by a 
stronger form of chaos (see Figure 22)!

 
  

 
 

Figure 21 – LRI restores order out of chaos: For 0 < α < 1   
the maximal Lyapunov exponent λ starts to decay to zero as  

N increases and α “weaker” form of chaos is expected 
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Figure 22 – The momentum probability density function (pdf)  

for Long Range Interactions, α = 0.7, converges to a q-Gaussian with q=1.249  
indicating a “weaker” form of chaos as time increases 

 
 

 
 

Figure 23 – On the contrary, the pdfs of the momenta for shorter ranges of interactions  
with α > 1 (in the above example α = 1.4), are seen  

to quickly converge to a pure Gaussian, indicating “strong” chaos 
 

 
To test these ideas further, we proceeded to 

carry additional studies to see e.g. how the q index 
of the pdfs behaves in these very interesting LRI 
regimes and obtained results of the kind shown in 
Figure 23. 

We also observed, however, that in all cases we 
studied, if the time interval of our integrations 
increased, a critical time tc was always reached 
where the q values started to decrease, exhibiting a 
tendency to go back to q =1 where strong chaos and 
real Gaussians prevail.  

Another important effect was also observed in 
the LRI regime, when the number of particles N was 
increased (see Figure 25(b)): The q index of the pdfs 

was also seen to increase as N becomes larger and 
larger, suggesting that weakly chaotic dynamics 
may also be found in the thermodynamic limit 
where N and the total energy E become larger and 
larger while E/N is kept constant.  

Thus, scaling our parameter b by the critical 
time tc and plotting the pdfs at each tc vs. the value 
of 1/N we discovered a remarkable “phase 
diagram”, see Figure 25 below, dividing the 
parameter plane in two regimes: One characterized 
by Gaussians, strong chaos and BG statistics and 
one where pdfs are q – Gaussians and the weakly 
chaotic motion and Tsallis thermostatistics  
reign! 
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Figure 24 – The pdf index q decreases to 1 over the regime of Long Range Interactions,  

from α = 0 to just above α = 1, where shorter range interactions take over 
 

 
 

(a)     (b)  
 

Figure 25 – (a): For LRI, α= 0.7, the index q, starts to decrease towards 1 after a time threshold tc ≈ 106,  
for these parameter values. (b): Momentum distributions for the system  

with b = 10, ε = 9, α = 0.7 for increasing N values.  
Note that as N grows the pdfs are described by a q–Gaussian whose index q increases from 1.17  

for N = 512 until 1.25 for N = 8192 
 

 
Finally, we completed our study by plotting the 

q parameter as a function of 1/log(N) as N grows to 
higher and higher values. Based in the results 
plotted in Figure 27 we thus proposed the following 
formula 

 
���� �� � ����� � ����

����.             (24) 

 
demonstrating the dependence of q on N in the 

LRI regime. As a result, we can use this formula to 
estimate the asymptotic behavior of q → q∞ in the 
limit N → ∞. Note that as N becomes larger and 
larger, the above formula allows us to determine the 
values q∞ (α) that the q-Gaussian pdfs will have in 
that limit.  
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Figure 26 – A “phase transition diagram” is obtained, separating BG from  
Tsallis thermostatistics, in which the limits t→ ∞and   N→ ∞ do not commute 

 

 
 

Figure 27 – The index q depends linearly on 1/ \log N for N=4096, 8192, 16384,  
as α changes, according the formula (24) 

 
 
Next, in our more recent work [13], we extended 

the above results to study of N – dimensional 
Hamiltonian systems in which the “length” of the 
linear interactions (represented by quadratic terms in 
the potential of the Hamiltonian function) are 
characterized by a different α index than those of the 
nonlinear interactions, represented by quartic terms 
in the potential. We also considered the effect od 
LRI in N – dimensional Hamiltonian lattices, where 
besides the interparticle interactions each particle 
possesses an on site potential of its own [14].  

It is not the place here, however, to also describe 
these results, as they are of a more advanced and 

specialized character. We thus prefer to encourage 
the interested reader to consult the corresponding 
references [13, 14] and limit ourselves to 
summarizing these findings in the Conclusion 
section that follows. 

 
Conclusions  
 
In this work, we have reviewed a number of 

results of our research team in the broader field of 
study that may be called following Complex 
Dynamics and Statistics of Hamiltonian systems. 
Although the work presented here has focused 
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primarily on 1-D lattices of the so called β – FPU 
models involving quartic and quadratic interactions, 
we believe that they are much more general and can 
be found also be bound in similar systems with 
other type of nonlinearities. Indeed, weakly and 
strongly chaotic motions appear in conservative 
systems of low dimensionality, even 2 – 
dimensional area preserving maps like the McMillan 
model analyzed in section 5.2. 

Our main conclusions can, therefore, be 
summarized as follows: 

1. We have demonstrated the importance of 
Nonlinear Normal Modes in exploring “weak” and 
“strong” chaos, depending on the energy density 
Ec/N > 0 at which they first become unstable. At 
energies where they have just destabilized it is 
possible to find in their vicinity weakly chaotic 
motions that “stick” to the associated saddle points 
for very long times. 

2. We mentioned the significance of Lyapunov 
spectra in quantifying strong chaos, and introduced 
the GALIk  spectrum of indices k=2,3,4,…, which 
are best suited for identifying chaos, when they 
vanish exponentially. We also stressed the fact that 
in the case of quasiperiodic motion, where the 
GALIs decay as power laws, they offer the most 
convenient strategy known to date by which the 
dimensionality of the torus can be determined. 

3. The GALI indices can also be used to study 
the breakdown of localization in 1-dimensional 
lattices: (i) In modal space connected to FPU 
recurrences and (ii) in position space, occurring in 
the form of discrete breathers, for which we can 
predict their breakdown long before it can be 
detected by other methods. 

4. When Long Range Interactions are imposed 
(LRI) on the nonlinear forces (quartic terms in the 
potential of our FPU models) – for any range of 
linear interactions – we obtain weakly chaotic 
motion characterized by q-Gausian pdfs with q>1 
(Tsallis thermostatistics). 

5. More specifically, in the LRI regime, we 
find a new “phase transition diagram”, separating 
BG from Tsallis thermostatistics, in which the limits  
t → ∞and N → ∞ do not commute. 

6. When we introduce LRI only on the linear 
forces (quadratic part of the potential) we obtain 
strongly chaotic motion demonstrated by pure 
Gausian pdfs with q = 1 (Boltzmann Gibbs 
thermodynamics). 

7. When LRI are imposed on the nonlinear 
forces, we find for long times limiting values q∞ > 1 
as N → ∞ , showing that the system remains weakly 

chaotic (with Tsallis and not Boltzmann Gibbs 
thermostatistics) in the thermodynamic limit. 

8. Finally, when we include in our potentials, 
besides the interparticle interactions, terms 
associated with local potentials at the site of each 
separate particle, LRI again yields evidence of 
highly regular dynamics, as single--site excitations 
lead to special low--dimensional solutions, that may 
be well described by a 2 – degree of freedom 
Duffing oscillator. On the other hand, the behavior 
of the maximal Lyapunov exponent, suggests in that 
case an approach to “quasi integrable” behavior in 
the thermodynamic limit, characterized by non-
Gaussian momentum distributions. 
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