
© 2018 al-Farabi Kazakh National University Printed in Kazakhstan

International Journal of Mathematics and Physics 9, №2, 56 (2018)

IRSTI 27.35.17

D.B. Zhakebayev, *K.K. Karzhaubayev, E.S. Moisseyeva, N.V. Tsoy

National Engineering Academy, Almaty, Kazakhstan
*e-mail: kairzhan.k@gmail.com

Simulation of thermal flows by lattice Boltzmann method
on the CUDA computational platform

Abstract. Originating from lattice gas automata theory, the lattice Boltzmann method (LBM) is an
interesting alternative to the solving of Navier-Stokes equations. In contrast to isothermal simulations, for
a while thermal flow simulations were challenging for LBM. Thermal flow simulations are important
task in various fields of research. Despite a large amount of work and research the dynamics of thermally
induced flows are still highly demanded. Motivation of this work is development of computational tool
for simulation of the dynamics of thermal flows. To this purpose, we developed LES-LBM solver
accelerated by the Graphics Processing Unit (GPU) on the CUDA computational platform, integrating
LBM with Large Eddy Simulation (LES). Simplicity of coding is usually an appealing feature of the
LBM. Conventional implementations of LBM suffer from high memory consumption and poor
computational performance. The main advantage of the solvers based on GPU is their ability to perform
significantly more floating point operations per unit time (FLOPS) than a Central Processing Unit (CPU)
and a good scalability of explicit parallel algorithms. LES-LBM code was tested on the NVIDIA GeForce
GTX 1050 ti and NVIDIA TESLA K80 GPUs.
Key words: The lattice Boltzmann method, CUDA, thermal flow.

Introduction

In June 2007 NVIDIA released a new
framework named CUDA for general parallel
processing applications. This framework enables
developers to implement GPU parallel programs in
C, C++ languages and allows direct access to the
GPU computing power without complicated
graphics API. Special tools which are included in an
official software development kit (SDK) allows to
debug GPU programs in runtime. Since 2007 a lot
of numerical libraries presented. They allow to
create efficient programs with less effort, and cover
such numerical algorithms like linear algebra
operations, sparse matrix computations, Fourier
transforms, image algorithms etc.

In a market NVIDIA has several separate
products, GeForce is for gaming, Quadro is for
professional OpenGL based rendering and Tesla for
high performance computations. Tesla compute

accelerators get strong positions in a such high
performance areas as financial analysis and
scientific computations. A lot of supercomputer
providers use NVIDIA GPUs to create energy
efficient computing clusters. One of the secret of the
hight popularity among users is the support of most
popular proprietary (CUDA) and open standards
(OpenCL, DirectCompute) for GPU programming.

Effort to use GPU as a massively parallel
processor computational fluid dynamics (CFD)
started in the beginning of 2000. One of the first
publications was a chapter in the GPU Gems Books
by M. J. Harris [1]. In the Chapter 38 he described
realization of simple fluid dynamics solver based on
Stam’s stable fluids [2]. Later several authors
published results of implementing Marker and Cell
method on a GPU [3].

The smoothed particle hydrodynamics (SPH) is
another approach for simulation of the fluid
dynamics, without direct use of the Navier Stokes

57D.B. Zhakebayev et al.

International Journal of Mathematics and Physics 9, №2, 56 (2018)

equations. Originally developed in [4] SPH is a
meshfree Lagrangian method which tracks position
and movement of many fluid particles, which allows
direct mass conservation. One drawback over grid-
based techniques is the need for large numbers of
particles to produce simulations of equivalent
resolution. Explicit nature of the method allows it to
run effectively on massive parallel processors as
GPU [5-7].

The lattice Boltzmann method (LBM) is a
relatively novel approach in computational fluid
dynamics (CFD), which, unlike most other CFD
methods, does not rely in directly solving the
Navier-Stokes equations by a numerical algorithm.

One of the most interesting feature of LBM is
that numerical procedure has the data locality
property. Such a property is very well suited to be
implemented in a massively parallel processors, like
GPUs [8-11]. In [12] LBM Large Eddy Simulations
for high Reynolds numbers were performed.
Developed numerical implementation was able to
run on four Fermi class GPUs simultaneously. Large
GPU memory (24GB) allowed to perform
simulations with relatively high spatial resolution
(max grid size 10240x10240) with active double
precision mode. However, authors mentioned that
four GPUs were located on the same machine, and
there is strong hardware limitation for further
improvement of spatial resolution. To overcome this
fact, authors recommended to extend their
implementation to multinode GPU clusters.

On the other hand, while for describing
hydrodynamic turbulence models based on the
Navier-Stokes equations have been used almost
exclusively for almost two centuries, a significant
increase in interest in LBM methods has recently
been explained by their computational efficiency.
These methods, based on the Boltzmann equation,
make it possible to predict the macroscopic
magnitudes of continuum mechanics, such as
velocity and pressure. Although it was proven
several years ago that hydrodynamic turbulence can
be accurately described using these methods, the
development of LES within LBM is still at a very
early stage [13]. For example, the LES-LBM
methods are used in [14-19].

Lattice Boltzmann Method

The basic quantity of the LBM is the discrete

velocity distribution function ��(�
⃗ � �) which is also

called particle populations. Particle populations

represents the density of particles with velocity �⃗� =
(���� ���� ���) at position-time (�⃗ � �)� �⃗ = ��� �� �� .
The discrete velocities are chosen such as to link
each lattice site to some of its neighbors. Fig. 1
shows the D3Q27 stencil, where each node is
connected to 26 of its nearest neighbors, and
position 0 assigned to resting particles.

�(�⃗ � �) = �
�
��(�

⃗ � �) (1)

��(�⃗ � �) = �
�
����(�

⃗ � �) (2)

By discretising the Boltzmann equation in

velocity space, physical space, and time, we find the
lattice Boltzmann equation:

��(�
⃗ + �⃗��� � + ��) = ��(�

⃗ � �) + ��(�
⃗ � �) + �� (3)

Where � is collision operator and �� is force.

One of simplest models for collision is Bhatnagar-
Gros-Krook [20], which relaxes the populations
towards an equilibrium ��� at a rate determined by
the relaxation time �:

��(�) = −�����
��

� �� (4)

����(�
⃗ � �) = ���(1 + �⃗ ���

⃗

���
+ (�⃗ ���

⃗)�
����

− �⃗ ��⃗

����
) (5)

Relation between physical kinematic viscosity

and lattice relaxation time is given by [10], where ��
is the lattice speed of sound:

� = ���(� − ��

�) (6)

Numerical algorithm for LBM consists of
collision (7) and streaming (8) steps. During
streaming particles propagate to neighbor nodes fig.
2a-b.

��∗(�
⃗ � �) = ��(�

⃗ � �) − ��
� (��(�

⃗ � �) − ����(�
⃗ � �)) (7)

��(�

⃗ + ��
⃗ ��� � + ��) = ��∗(�

⃗ � �) (8)

�� = (1 − ��
��)��(

���
���
+ (�������������)��

���
)�� (9)

58 Simulation of thermal flows by lattice Boltzmann method on the CUDA computational platform

International Journal of Mathematics and Physics 9, №2, 56 (2018)

Figure 1 - D3Q27 lattice model used in the simulations

In many situations, the work from viscous

dissipation and compression is so small that it does
not significantly contribute to the heat balance. It is
then sufficient to consider an advection-diffusion

equation for temperature without heat source terms,
together with the incompressible Navier-Stokes eq.
For such simulations often two population model is
applied, in which there is separate distribution
function for temperature - �� is introduced. For
temperature distribution function same equations are
applied for collision and streaming process (7-8).

Buoyancy is modeled through force density F. If
density variations due temperature is small
Boussinesq approximation could be used [10-11].

Numerical algorithm for LBM reads as:

———————————
for each time step t do
compute macroscopic velocity, temperature and density
compute equilibrium distribution for g
perform one step of collision for g
apply boundary conditions for temperature
perform propagation step
compute equilibrium distribution for f
perform one step of collision for f
apply boundary conditions for velocity
perform propagation step
 ������
———————————

a

b

Figure 2 – Streaming from central node (a) and streaming into central node (b)

CUDA implementation

CUDA enabled simulation code is implemented

in the CUDA C language which is an extension to
the C language. Functions in a CUDA C are marked
as host functions, device functions and kernels. Host
functions are simple C functions which executed by
host processor. Device functions are special
functions which should be launched on a GPU.
Kernel functions are used to launch GPU functions
from the host code.

Kernel function runs in parallel on the GPU.
During launch of the kernel a lot of kernel copies
executed in parallel by GPU. The execution pattern
is identified by a grid. The grid is the special
configuration of the parallel threads, which are
grouped into blocks. Grid and block layout could be
one, two and three dimensional. Fig. 3 show
example of the grid which has 6 blocks and two
dimensional layout. Each block in fig. 3 also has
two dimensional layout with 9 threads, total number
of threads 54.

59D.B. Zhakebayev et al.

International Journal of Mathematics and Physics 9, №2, 56 (2018)

Figure 3 – CUDA execution model

Each thread is executed by Streaming

multiprocessor (SM). SM has several scalar
processors (SP) which actually runs code. Special
scheduling algorithms and chips make use of large
amount of SP on a GPU.

For convenience, “threadIdx” is a 3-component
vector, so threads can be identified using a one-
dimensional, two-dimensional, or three-dimensional
thread index, forming a one-dimensional, two-
dimensional, or three-dimensional block of threads.
This provides a natural way to invoke calculations
for elements in a domain, such as a vector, matrix,
or volume.

The index of a threads and its identifier are
directly related to each other: they are the same for a
one-dimensional block; for a two-dimensional block
of size (Dx, Dy), the thread ID of index(x, y) is (x +

y Dx); for a three-dimensional block of size (Dx,
Dy, Dz), the thread ID of index(x, y, z) is (x + y Dx
+ z Dx Dy).

There is a limit on the number of threads in a
block, since it is expected that all threads of a block
will be on the same processor core and must share
the limited memory resources of this core. On
modern GPUs, a block of threads can contain up to
1024 threads.

However, the kernel can be executed by several
blocks of threads of the same shape, so that the total
number of threads is equal to the number of threads
in the block multiplied by the number of blocks.

Listing 1 provides example of GPU kernel
function for streaming stage in LBM simulations.
Variables i, j, k are used to assign memory location
for each thread.

Listing 1 – GPU kernel function

__global__ void stream(float *f_dst, float *f_src)
{
 unsigned int i = threadIdx.x + blockIdx.x * blockDim.x;
 unsigned int j = threadIdx.y + blockIdx.y * blockDim.y;
 unsigned int k = threadIdx.z + blockIdx.z * blockDim.z;

 for (unsigned int l=0; l<NDIR; l++) {
 unsigned int i2 = (NX + i - dirx[l]) % NX;
 unsigned int j2 = (NY + j - diry[l]) % NY;
 unsigned int k2 = (NZ + k - dirz[l]) % NZ;

 f_dst[voffset(i, j, k, l)] = f_src[voffset(i2, j2, k2, l)];
 }
}

CUDA programming model introduces concept

of memory types. CUDA enabled GPU has device,
shared, texture, constant cache and register memory.
Register memory is very fast memory, with on-chip
implementation. Size of register memory may vary
between GPU’s, but it is usually small, and cannot

store arrays. Shared memory is special memory
which is shared between threads of the same block.
Proper use of shared memory may decrease load to
global GPU memory. Global GPU memory or
device memory is large memory, which is slow
comparably to other types of memory, but has

60 Simulation of thermal flows by lattice Boltzmann method on the CUDA computational platform

International Journal of Mathematics and Physics 9, №2, 56 (2018)

advantage of big size, often several gigabytes. There
is also special caches to store constant values and
one-two-three dimensional textures. Use of texture
cache may increase simulation speed if there exist
special pattern while accessing data in cache.

To archive high performance CUDA implies
that programmer uses right type of memory for
various data. Results of the simulation should be
uploaded to CPU or host memory using special
CUDA API calls.

Figure 4 - CUDA hardware model

Results

The CUDA LBM solver implemented on the

GPU is used to study the differentially heated cubic
cavity outlined in Fig. 5. Two opposite vertical
walls have imposed temperatures -T0 and +T0,
whereas the remaining walls are adiabatic. This
configuration has been extensively studied in the
two-dimensional configuration and various
benchmark solution are available.

All simulation parameters were the same as in
the benchmark solution [11]. In order to perform
validation, the flow in the differentially heated

cavity is computed for Rayleigh numbers equal to
10� , 10� , 10� and 10� . The results are compared
with available data. Table 1 gives the obtained
Nusselt numbers as well as the values published in
[11]. GPU simulations shows good results which are
in accordance with the reference values.

Simulations were performed in a single
precision mode on a NVIDIA 1050 and Tesla K80
GPUs. Their characteristics are presented in the
table 2. Mesh size is 128x128x64. Additional
comparison was made with multicore workstation
with 64 available cores and 256 threads. Results of
performance comparison is presented in fig. 6.

Figure 5 – Natural convection scheme

61D.B. Zhakebayev et al.

International Journal of Mathematics and Physics 9, №2, 56 (2018)

Table 1 – Comparison of Nusselt numbers

Rayleight number
Present 2.031 4.3302 8.6468 16.4193

Obrecht [11] 2.056 4.3382 8.6457 16.4202

Figure 6 – Performance comparison

Table 2 – GPU parameters

Parameter/GPU 1050 Ti Tesla K80
CUDA cores 768 4992
GPU Clock 1392 MHz 875 MHz

SP performance 2.1 TFlops 8.73 TFlops
DP performance 1/32 of SP 2.91 TFlops

Memory 4 GB GDDR5 24 GB GDDR5
Bandwidth 112 GB/s 480 GB/s

ECC support No Yes

Conclusion

In this paper, we presented in-house thermal

LBM solver for CUDA enabled GPU workstations.
Validity of the numerical algorithm was tested on a
benchmark Natural convection problem. The code
uses separate populations for velocity and
temperature. According to the timings GPU based
LBM gets higher performance in comparison with
the single CPU code. Code runtime also compared
with the results of OpenMP version of the code,
which is executed on Xeon Phi KNL workstation
with 64 available cores. Promising results shows

that GPU accelerated LBM is a good alternative to
CPU versions. Drawback of the CUDA code is the
dependence on the CUDA platform and decisions
made by Nvidia company. Also, most of the CUDA
libraries are closed source, or proprietary standards,
which is opposite to the role of the OpenMP.

Still a plenty of improvements are possible to
the code. One is the extension of the algorithm to
multi GPU and multi node configurations and more
aggressive optimization for memory bandwidth.

Developed code could be used in various
thermal fluid flow simulations for which Boussinesq
approximation for density fluctuations is valid.

62 Simulation of thermal flows by lattice Boltzmann method on the CUDA computational platform

International Journal of Mathematics and Physics 9, №2, 56 (2018)

Acknowledgements

This work was supported by the MES Republic

of Kazakhstan (grant number AP05132121).

References

1. Fernando R. “GPU gems: programming

techniques, tips and tricks for real-time graphics.”
(Pearson Higher Education, 2004).

2. Stam J. “Stable fluids.” Proceedings of the
26th annual conference on Computer graphics and
interactive techniques. – ACM Press/Addison-
Wesley Publishing Co. (1999): 121-128.

3. L. M. Itu, C. Suciu, F. Moldoveanu, A.
Postelnicu and C. Suciu “Optimized GPU based
simulation of the incompressible Navier-Stokes
equations on a MAC grid.” RoEduNet International
Conference 10th Edition: Networking in Education
and Research, Iasi (2011): 1-4.

4. R.A. Gingold, J.J. Monaghan “Smoothed
particle hydrodynamics: theory and application to
non-spherical stars.” Mon. Not. R. Astron. Soc. 181
(1977): 375–89.

5. Alexis Hérault, Annamaria Vicari, and Ciro
Del Negro “A SPH thermal model for the cooling of
a lava lake.” Proceedings of the 3th SPHERIC
Workshop (Lausanne, 2008).

6. Robert A. Dalrymple and Alexis Hérault
“Levee breaching with GPU-SPHysics code.”
Proceedings of the 4th SPHERIC Workshop
(Nantes, 2009).

7. Robert A. Dalrymple, Annamaria Vicari,
Ciro Del Negro, and Robert A. Dalrymple,
“Modeling water waves in the surf zone with GPU-
SPHysics.” Proceedings of the 4th SPHERIC
Workshop (Nantes, 2009).

8. Christian Obrecht, FrédéricKuznik, Bernard
Tourancheau, Jean-Jacques Roux “Scalable lattice
Boltzmann solvers for CUDA GPU clusters.”
Parallel Computing 139, no. 6-7 (2013):
https://doi.org/10.1016/j.parco.2013.04.001.

9. Parmigiani A., Huber C., Chopard B. et al.
Eur. Phys. J. Spec. Top. 171 (2009): 37.
https://doi.org/10.1140/epjst/e2009-01009-7.

10. Krüger T., Kusumaatmaja H., Kuzmin A.,
Shardt O., Silva G., Viggen E. M. “The Lattice
Boltzmann Method.” Springer (2017).

11. Lars Moastuen “Real-time simulation of the
incompressible Navier-Stokes equations on the
GPU.” (PhD diss., Oslo University, July 2007).

12. Li C., Maa J.P.Y., Kang H. Sci. China Phys.
Mech. Astron. 55 (2012): 1894.
https://doi.org/10.1007/s11433-012-4856-9.

13. Xu H., Malaspinas O., Sagaut P.
“Sensitivity Analysis and Optimal Strategies of
MRT-LBM for CAA-Determination of free
relaxation parameters in MRT-LBM.” Eighth
International Conference for Mesoscopic Methods
in Engineering and Science (2010).

14. Stiebler M. et al. “Lattice Boltzmann large
eddy simulation of subcritical flows around a sphere
on non-uniform grids.” Computers & Mathematics
with Applications 61, no. 12 (2011): 3475-3484.

15. Jacob J., Malaspinas O., Sagaut P. “A new
hybrid recursive regularised Bhatnagar–Gross–
Krook collision model for Lattice Boltzmann
method-based large eddy simulation.” Journal of
Turbulence (2018): 1-26.

16. Pradhan A., Yadav S. “Large Eddy
Simulation using Lattice Boltzmann Method based
on Sigma Model.” Procedia Engineering 127
(2015): 177-184.

17. Liou T. M., Wang C. S. “Large eddy
simulation of rotating turbulent flows and heat
transfer by the lattice Boltzmann method.” Physics
of Fluids 30, no. 1 (2018): 015106.

18. Hamane D., Guerri O., Larbi S.
“Investigation of flow around a circular cylinder in
laminar and turbulent flow using the Lattice
Boltzmann method.” AIP Conference Proceedings
1648, no. 1 (2015): 850094.

19. Cui X. et al. “A 2D DEM–LBM study on
soil behaviour due to locally injected fluid.”
Particuology 10, no. 2 (2012): 242-252.

20. Z. Guo, C. Zheng, B. Shi “Discrete lattice
effects on the forcing term in the lattice Boltzmann
method.” Phys. Rev. E 65 (4) (2002) 046308.

21. S.K. Kang, Y.A. Hassan “A direct-forcing
immersed boundary method for the thermal lattice
Boltzmann method.” Comput. Fluids 49 (1) (2011):
36–45.

22. Obrecht C. et al. “The TheLMA project: A
thermal lattice Boltzmann solver for the GPU.”
Computers & Fluids 54 (2012): 118-126

