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Simulation of thermal flows by lattice Boltzmann method  
on the CUDA computational platform 

Abstract. Originating from lattice gas automata theory, the lattice Boltzmann method  (LBM) is an 
interesting alternative to the solving of Navier-Stokes equations. In contrast to isothermal simulations, for 
a while thermal flow simulations were challenging for LBM.  Thermal flow simulations are important 
task in various fields of research. Despite a large amount of work and research the dynamics of thermally 
induced flows are still highly demanded. Motivation of this work is development of computational tool 
for simulation of the dynamics of thermal flows. To this purpose, we developed LES-LBM solver 
accelerated by the Graphics Processing Unit (GPU) on the CUDA computational platform, integrating 
LBM with Large Eddy Simulation (LES). Simplicity of coding is usually an appealing feature of the 
LBM. Conventional implementations of LBM suffer from high memory consumption and poor 
computational performance. The main advantage of the solvers based on GPU is their ability to perform 
significantly more floating point operations per unit time (FLOPS) than a Central Processing Unit (CPU) 
and a good scalability of explicit parallel algorithms. LES-LBM code was tested on the NVIDIA GeForce 
GTX 1050 ti and NVIDIA TESLA K80 GPUs. 
Key words: The lattice Boltzmann method, CUDA, thermal flow. 

Introduction 

In June 2007 NVIDIA released a new 
framework named CUDA for general parallel 
processing applications. This framework enables 
developers to implement GPU parallel programs in 
C, C++ languages and allows direct access to the 
GPU computing power without complicated 
graphics API. Special tools which are included in an 
official software development kit (SDK) allows to 
debug GPU programs in runtime. Since 2007 a lot 
of numerical libraries presented. They allow to 
create efficient programs with less effort, and cover 
such numerical algorithms like linear algebra 
operations, sparse matrix computations, Fourier 
transforms, image algorithms etc. 

In a market NVIDIA has several separate 
products, GeForce is for gaming, Quadro is for 
professional OpenGL based rendering and Tesla for 
high performance computations. Tesla compute 

accelerators get strong positions in a such high 
performance areas as financial analysis and 
scientific computations. A lot of supercomputer 
providers use NVIDIA GPUs to create energy 
efficient computing clusters. One of the secret of the 
hight popularity among users is the support of most 
popular proprietary (CUDA) and open standards 
(OpenCL, DirectCompute) for GPU programming. 

Effort to use GPU as a massively parallel 
processor computational fluid dynamics (CFD) 
started in the beginning of 2000. One of the first 
publications was a chapter in the GPU Gems Books 
by M. J. Harris [1]. In the Chapter 38 he described 
realization of simple fluid dynamics solver based on 
Stam’s stable fluids [2]. Later several authors 
published results of implementing Marker and Cell 
method on a GPU [3]. 

The smoothed particle hydrodynamics (SPH) is 
another approach for simulation of the fluid 
dynamics, without direct use of the Navier Stokes 
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equations. Originally developed in [4] SPH is a 
meshfree Lagrangian method which tracks position 
and movement of many fluid particles, which allows 
direct mass conservation. One drawback over grid-
based techniques is the need for large numbers of 
particles to produce simulations of equivalent 
resolution. Explicit nature of the method allows it to 
run effectively on massive parallel processors as 
GPU [5-7].  

The lattice Boltzmann method (LBM) is a 
relatively novel approach in computational fluid 
dynamics (CFD), which, unlike most other CFD 
methods, does not rely in directly solving the 
Navier-Stokes equations by a numerical algorithm.  

One of the most interesting feature of LBM is 
that numerical procedure has the data locality 
property. Such a property is very well suited to be 
implemented in a massively parallel processors, like 
GPUs [8-11]. In [12] LBM Large Eddy Simulations 
for high Reynolds numbers were performed. 
Developed numerical implementation was able to 
run on four Fermi class GPUs simultaneously. Large 
GPU memory (24GB) allowed to perform 
simulations with relatively high spatial resolution 
(max grid size 10240x10240) with active double 
precision mode. However, authors mentioned that 
four GPUs were located on the same machine, and 
there is strong hardware limitation for further 
improvement of spatial resolution. To overcome this 
fact, authors recommended to extend their 
implementation to multinode GPU clusters. 

On the other hand, while for describing 
hydrodynamic turbulence models based on the 
Navier-Stokes equations have been used almost 
exclusively for almost two centuries, a significant 
increase in interest in LBM methods has recently 
been explained by their computational efficiency. 
These methods, based on the Boltzmann equation, 
make it possible to predict the macroscopic 
magnitudes of continuum mechanics, such as 
velocity and pressure. Although it was proven 
several years ago that hydrodynamic turbulence can 
be accurately described using these methods, the 
development of LES within LBM is still at a very 
early stage [13]. For example, the LES-LBM 
methods are used in [14-19]. 

 
Lattice Boltzmann Method 
 
The basic quantity of the LBM is the discrete 

velocity distribution function ��(�
⃗ � �) which is also 

called particle populations. Particle populations 

represents the density of particles with velocity �⃗� =
(���� ���� ���)  at position-time (�⃗ � �)� �⃗ = ��� �� �� . 
The discrete velocities are chosen such as to link 
each lattice site to some of its neighbors. Fig. 1 
shows the D3Q27 stencil, where each node is 
connected to 26 of its nearest neighbors, and 
position 0 assigned to resting particles. 
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By discretising the Boltzmann equation in 

velocity space, physical space, and time, we find the 
lattice Boltzmann equation: 
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Where �  is collision operator and ��  is force. 

One of simplest models for collision is Bhatnagar-
Gros-Krook [20], which relaxes the populations 
towards an equilibrium ��� at a rate determined by 
the relaxation time �: 
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Relation between physical kinematic viscosity 

and lattice relaxation time is given by [10], where �� 
is the lattice speed of sound: 

 
� = ���(� − ��

� )                           (6) 
 

Numerical algorithm for LBM consists of 
collision (7) and streaming (8) steps. During 
streaming particles propagate to neighbor nodes fig. 
2a-b. 
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Figure 1 - D3Q27 lattice model used in the simulations 
 
 
In many situations, the work from viscous 

dissipation and compression is so small that it does 
not significantly contribute to the heat balance. It is 
then sufficient to consider an advection-diffusion 

equation for temperature without heat source terms, 
together with the incompressible Navier-Stokes eq. 
For such simulations often two population model is 
applied, in which there is separate distribution 
function for temperature - ��  is introduced. For 
temperature distribution function same equations are 
applied for collision and streaming process (7-8).  

Buoyancy is modeled through force density F. If 
density variations due temperature is small 
Boussinesq approximation could be used [10-11]. 

Numerical algorithm for LBM reads as: 
 
——————————— 
for each time step t do 
compute macroscopic velocity, temperature and density 
compute equilibrium distribution for g 
perform one step of collision for g 
apply boundary conditions for temperature 
perform propagation step 
compute equilibrium distribution for f 
perform one step of collision for f 
apply boundary conditions for velocity 
perform propagation step 
 ������ 
———————————

 
 

 
a 

 
b 

 
Figure 2 – Streaming from central node (a) and streaming into central node (b) 

 
 
CUDA implementation 
 
CUDA enabled simulation code is implemented 

in the CUDA C language which is an extension to 
the C language. Functions in a CUDA C are marked 
as host functions, device functions and kernels. Host 
functions are simple C functions which executed by 
host processor. Device functions are special 
functions which should be launched on a GPU. 
Kernel functions are used to launch GPU functions 
from the host code. 

Kernel function runs in parallel on the GPU. 
During launch of the kernel a lot of kernel copies  
executed in parallel by GPU. The execution pattern 
is identified by a grid. The grid is the special 
configuration of the parallel threads, which are 
grouped into blocks. Grid and block layout could be 
one, two and three dimensional. Fig. 3 show 
example of the grid which has 6 blocks and two 
dimensional layout. Each block in fig. 3 also has 
two dimensional layout with 9 threads, total number 
of threads 54.  
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Figure 3 – CUDA execution model 
 

 
Each thread is executed by Streaming 

multiprocessor (SM). SM has several scalar 
processors (SP) which actually runs code. Special 
scheduling algorithms and chips make use of large 
amount of SP on a GPU. 

For convenience, “threadIdx” is a 3-component 
vector, so threads can be identified using a one-
dimensional, two-dimensional, or three-dimensional 
thread index, forming a one-dimensional, two-
dimensional, or three-dimensional block of threads. 
This provides a natural way to invoke calculations 
for elements in a domain, such as a vector, matrix, 
or volume. 

The index of a threads and its identifier are 
directly related to each other: they are the same for a 
one-dimensional block; for a two-dimensional block 
of size (Dx, Dy), the thread ID of index(x, y) is (x + 

y Dx); for a three-dimensional block of size (Dx, 
Dy, Dz), the thread ID of index(x, y, z) is (x + y Dx 
+ z Dx Dy). 

There is a limit on the number of threads in a 
block, since it is expected that all threads of a block 
will be on the same processor core and must share 
the limited memory resources of this core. On 
modern GPUs, a block of threads can contain up to 
1024 threads. 

However, the kernel can be executed by several 
blocks of threads of the same shape, so that the total 
number of threads is equal to the number of threads 
in the block multiplied by the number of blocks. 

Listing 1 provides example of GPU kernel 
function for streaming stage in LBM simulations. 
Variables i, j, k are used to assign memory location 
for each thread. 

 
 
Listing 1 – GPU kernel function 
 
__global__ void stream(float *f_dst, float *f_src) 
{ 
    unsigned int i = threadIdx.x + blockIdx.x * blockDim.x; 
    unsigned int j = threadIdx.y + blockIdx.y * blockDim.y; 
    unsigned int k = threadIdx.z + blockIdx.z * blockDim.z; 
 
    for (unsigned int l=0; l<NDIR; l++) { 
        unsigned int i2 = (NX + i - dirx[l]) % NX; 
        unsigned int j2 = (NY + j - diry[l]) % NY; 
        unsigned int k2 = (NZ + k - dirz[l]) % NZ; 
 
        f_dst[voffset(i, j, k, l)] = f_src[voffset(i2, j2, k2, l)]; 
    } 
} 
 
CUDA programming model introduces concept 

of memory types. CUDA enabled GPU has device, 
shared, texture, constant cache and register memory. 
Register memory is very fast memory, with on-chip 
implementation. Size of register memory may vary 
between GPU’s, but it is usually small, and cannot 

store arrays. Shared memory is special memory 
which is shared between threads of the same block. 
Proper use of shared memory may decrease load to 
global GPU memory. Global GPU memory or 
device memory is large memory, which is slow 
comparably to other types of memory, but has 
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advantage of big size, often several gigabytes. There 
is also special caches to store constant values and 
one-two-three dimensional textures. Use of texture 
cache may increase simulation speed if there exist 
special pattern while accessing data in cache.  

To archive high performance CUDA implies 
that programmer uses right type of memory for 
various data. Results of the simulation should be 
uploaded to CPU or host memory using special 
CUDA API calls. 

 
 

 
 

Figure 4 - CUDA hardware model 
 
 
Results 
 
The CUDA LBM solver implemented on the 

GPU is used to study the differentially heated cubic 
cavity outlined in Fig. 5. Two opposite vertical 
walls have imposed temperatures -T0 and +T0, 
whereas the remaining walls are adiabatic. This 
configuration has been extensively studied in the 
two-dimensional configuration and various 
benchmark solution are available. 

All simulation parameters were the same as in 
the benchmark solution [11]. In order to perform 
validation, the flow in the differentially heated 

cavity is computed for Rayleigh numbers equal to 
10� , 10� , 10�  and 10� . The results are compared 
with available data. Table 1 gives the obtained 
Nusselt numbers as well as the values published in 
[11]. GPU simulations shows good results which are 
in accordance with the reference values. 

Simulations were performed in a single 
precision mode on a NVIDIA 1050 and Tesla K80 
GPUs. Their characteristics are presented in the 
table 2. Mesh size is 128x128x64. Additional 
comparison was made with multicore workstation 
with 64 available cores and 256 threads. Results of 
performance comparison is presented in fig. 6. 

 
 

 
Figure 5 – Natural convection scheme 
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Table 1 – Comparison of Nusselt numbers 
 

Rayleight number     
Present 2.031 4.3302 8.6468 16.4193

Obrecht [11] 2.056 4.3382 8.6457 16.4202
 
 

 
 

Figure 6 – Performance comparison 
 

 
Table 2 – GPU parameters 
 

Parameter/GPU 1050 Ti Tesla K80 
CUDA cores 768 4992 
GPU Clock 1392 MHz 875 MHz 

SP performance 2.1 TFlops 8.73 TFlops 
DP performance 1/32 of SP 2.91 TFlops 

Memory 4 GB GDDR5 24 GB GDDR5 
Bandwidth 112 GB/s 480 GB/s 

ECC support No Yes 
 
 
Conclusion 
 
In this paper, we presented in-house thermal 

LBM solver for CUDA enabled GPU workstations. 
Validity of the numerical algorithm was tested on a 
benchmark Natural convection problem. The code 
uses separate populations for velocity and 
temperature. According to the timings GPU based 
LBM gets higher performance in comparison with 
the single CPU code. Code runtime also compared 
with the results of OpenMP version of the code, 
which is executed on Xeon Phi KNL workstation 
with 64 available cores. Promising results shows 

that GPU accelerated LBM is a good alternative to 
CPU versions. Drawback of the CUDA code is the 
dependence on the CUDA platform and decisions 
made by Nvidia company. Also, most of the CUDA 
libraries are closed source, or proprietary standards, 
which is opposite to the role of the OpenMP.  

Still a plenty of improvements are possible to 
the code. One is the extension of the algorithm to 
multi GPU and multi node configurations and more 
aggressive optimization for memory bandwidth. 

Developed code could be used in various 
thermal fluid flow simulations for which Boussinesq 
approximation for density fluctuations is valid. 
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