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Abstract. This paper presents numerical solutions of the mixed convection in backward-facing step 
flows with the vertical buoyancy forces. A two-dimensional incompressible Navier-Stokes equation is 
used to describe this process. This system is approximated by the control volume method and solved 
numerically by the projection method. The two-dimensional Poisson equation satisfying the discrete 
continuity equation that is solved by the Jacobi iterative method at each time step. The numerical 
solutions of the laminar flow behind the backward-facing step with the vertical buoyancy forces are 
compared with the numerical results of other authors. This numerical algorithm is completely 
parallelized using various geometric domain decompositions (1D, 2D and 3D). Preliminary theoretical 
analysis of the various decomposition methods effectiveness of the computational domain and real 
computational experiments for this problem were made and the best domain decomposition method was 
determined. In the future, a proven mathematical model and parallelized numerical algorithm with the 
best domain decomposition method can be applied for various complex flows with the vertical buoyancy 
forces. 
Key words: domain decomposition method, backward-facing step flow, projection method, vertical 
buoyancy forces, mixed convection. 

 
 
Introduction 
 
In many technical flows of practical interest, 

like flow divisions, with the sudden expansion of 
geometry or with subsequent re-joining, are a 
common occurrence. The existence of a flow 
separation and recirculation area has a significant 
effect on the performance of heat transfer devices, 
for example, cooling equipment in electrical 
engineering, cooling channels of turbine blades, 
combustion chambers and many other heat 
exchanger surfaces that appear in the equipment. 

Many papers are devoted to the motion of a 
fluid with separation and reconnection of flows 
without taking into account the buoyancy forces. 
The importance of this process is indicative of the 
number of papers where special attention was paid 
to building equipment [1-3] and developing 
experimental and theoretical methods for detailed 
study of flows with separation regions [4-6]. An 

extensive survey of isothermal flows in fluid flows 
is given in papers [10-12]. Heat transfer in the flows 
has been investigated by many authors, like Aung 
[13, 14], Aung et al. [15], Aung and Worku [16], 
Sparrow et al. [17, 18] and Sparrow and Chuck 
[19]. However, published papers on this topic do 
not take into account the strength of buoyancy force 
on the flow stream or the characteristics of heat 
transfer. These effects become significant in the 
laminar flow regime, where the velocity is relatively 
low, and when the temperature difference is 
relatively high. Ngo and Byon [26] studied the 
location effect of the heater and the size of the 
heater in a two-dimensional square cavity using the 
finite element method. Oztop and Abu-Nada [27] 
numerically investigated natural convection in 
rectangular shells, partially heated from the side 
wall by the finite volume method. 

In this paper considered the influence of 
buoyancy forces on the flow and heat transfer 
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characteristics in individual flows. Numerical 
solutions for a laminar mixed convective airflow 
(Pr=0.7) in a vertical two-dimensional channel with 
a backward-facing step to maintain the buoyancy 
effect are shown in Figure 1. Numerical results of 
interest, such as velocity and temperature 
distributions, re-binding lengths and friction 
coefficients are presented for the purpose of 
illustrating the effect of buoyancy forces on these 
parameters. 

 

 
 

Figure 1 – Schematic representation  
of the backward-facing step flows 

 
 
Mathematical formulation of the problem 
 
Consider a two-dimensional laminar convective 

flow in a vertical channel with a sudden expansion 
behind the inverse step of height s, as shown in Fig. 
1. The straight wall of the channel is maintained at a 
uniform temperature equal to the temperature of the 
inlet air T0. The stepped wall below the stage is 
heated to a uniform temperature, which can be 
adjusted to any desired value Tw. The upper part of 
the stepped wall and the reverse side is installed as 
an adiabatic surface. The inlet length of the channel 
xi and the outlet lower length xe of the channel are 
appropriate dimensions. These lengths are assumed 

to be infinite, but the simulation domain is limited 
by the length Le = xe + xi. The smaller section of the 
channel before the projection has a height, and the 
large section below the stage has a height H = h + 
s. Air flows up the channel with mean velocity u0 and uniform temperature T0. The gravitational force 
g in this problem is considered to act vertically 
downwards. 

To describe this physical problem, was used 
assumption about constant properties, and was used 
the Boussinesq approximation. This system of 
equations in an immense form can be written in the 
form: 
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The dimensionless parameters in the equations 

given above are defined by the formula: 
 

0uuU  ,  0uV  , 

sxX  , syY  , 
 

   00 TTTT w  , 2
00upP  , 

 
Pr , su0Re  , 

 

  23
0  sTTgGr w  . 

 
where α – the temperature diffusion, ν – the 
kinematic viscosity, and β – the thermal expansion 
coefficient are estimated at the film temperature 

  2/0 wf TTT  .
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Figure 2 – Boundary conditions 

 
 
Boundary conditions: 
 
(a) Inlet conditions: At the point iXX   and 

1 Y H s  : 0uuU i , 0V , 0 , 

2Re
Gr

x
p





. 

where ui is the local distribution of velocities at the 
inlet, which is assumed to have a parabolic profile 
and ui/u0 an average inlet velocity, that is, given by 
formula 

 

  22
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(b) Outlet conditions: At the point X = Xe and 

0 Y H s  : 0U X   , 2 2 0X   , 0V X   , 

2Re
p Gr
x




 


. 

 
(c) on the top wall: At the point sHY /  and 

i eX X X   : 0U , 0V , 0 , 0
p
y



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(d) on the wall of the upper stage: At the point 
1Y  and 0iX X   : 0U , 0V , 0Y   , 

0
p
y





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(e) on the wall of the lower stage: At point 

0X  and 10  Y : 0U , 0V , 0X   , 

0
p
x
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(f) on the wall below the stage: At the point 
0Y  and eXX 0 : 0U , 0V , 1 , 

0
p
y





. 

 
The last term on the right-hand side of equation 

(2) is the contribution of the buoyancy force. The 
length of the downstream flow from the simulation 
area was chosen to be 70 steps (Xe = 70). The upper 
length of the design area was chosen to be 5 steps 
(i.e. Xi = 5), and the velocity profile at the input area 
was set as parabolic profile, like 

22
0 6 ( ) ( )iu u y H s y Hs H s        , and tempera-

ture was chosen as uniform T0. 
 
The numerical algorithm 
 
For a numerical solution of this system of 

equations, the projection method is used [20-23]. 
The equations are approximated by the finite 
volume method [20, 24]. At the first stage it is 
assumed that the transfer of momentum is carried 
out only through convection and diffusion, and an 
intermediate velocity field is calculated by the 
fourth-order Runge-Kutta method [21, 22]. At the 
second stage, according to the found intermediate 
velocity field, there is a pressure field. The Poisson 
equation for the pressure field is solved by the 
Jacobi method. At the third stage it is assumed that 
the transfer is carried out only due to the pressure 
gradient. At the fourth stage, the equations for the 
temperature are calculated by the fourth-order 
Runge-Kutta method [21, 22]. 
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Parallelization algorithm 
 
For numerical simulation was constructed a 

computational mesh by using the PointWise 
software. The problem was launched on the ITFS-
MKM software using a high-performance 
computing. This numerical algorithm is completely 
parallelized using various geometric domain 
decompositions (1D, 2D and 3D). Geometric 
partitioning of the computational grid is chosen as 
the main approach of parallelization. In this case, 
there are three different ways of exchanging the 
values of the grid function on the computational 
nodes of a one-dimensional, two-dimensional, and 
three-dimensional mesh. After the domain 
decomposition stage, when parallel algorithms are 
built on separate blocks, a transition is made to the 
relationships between the blocks, the simulations on 
which will be executed in parallel on each 
processor. For this purpose, a numerical solution of 
the equation system was used for an explicit 
scheme, since this scheme is very efficiently 
parallelized. In order to use the domain 
decomposition method as a parallelization method, 
this algorithm uses the boundary nodes of each 
subdomain in which it is necessary to know the 
value of the grid function that borders on the 
neighboring elements of the processor. To achieve 
this goal, at each compute node, ghost points store 
values from neighboring computational nodes, and  
 

organize the transfer of these boundary values 
necessary to ensure homogeneity of calculations for 
explicit formulas. 

Data transmission is performed using the 
procedures of the MPI library [25]. By doing 
preliminary theoretical analysis of the effectiveness 
of various domain decomposition methods of the 
computational domain for this problem, which will 
estimate the time of the parallel program as the time 
Tcalc of the sequential program divided by the 
number of processors plus the transmission time  
Tp = Tcalc / p + Tcom. While transmissions for various 
domain decomposition methods can be 
approximately expressed through capacity: 

 
22 21 xNtT send

D
com   

 
2/122 42 pxNtT send

D
com      (5) 

 
3/223 62 pxNtT send

D
com 

  
where N3 – the number of nodes in the 
computational mesh, p – the number of processors 
(cores), tsend – the time of sending one element 
(number). 

It should be noted that for different 
decomposition methods, the data transmission cost 
can be represented as )(2 21 pxkNtT send

D
com   in 

accordance with the formula (5), where k(p) is the 
proportionality coefficient, which depends on the 
domain decomposition method and the number of 
processing elements used. 

At the first stage, one common program was 
used, the size of the array from start to run did not 
change, and each element of the processor was 
numbered by an array of elements, starting from 
zero. For the test simulation is used well known 
problem – 3D cavity flow. Despite the fact that 
according to the theoretical analysis of 3D 
decomposition is the best option for parallelization 
(Figure 3), computational experiments showed that 
the best results were achieved using 2D 
decomposition, when the number of processes 
varies from 25 to 144 (Figure 3). 
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Figure 3 – Speed-up for various domain decomposition methods of the computational domain. 

 
 
Based on the preliminary theoretical analysis of 

the graphs, the following character can be noted. 
The simulation time without the interprocessor 
communications cost with different domain 
decomposition methods should be approximately 
the same for the same number of processors and be 
reduced by Tcalc /p. In fact, the calculated data show 
that when using 2D decomposition on different 
computational grids, the minimal cost for 
simulation and the cost graphs are much higher, 
depending on the simulation time, on several 
processors taken Tcalc / p. 

To explain these results, it is necessary to pay 
attention to the assumptions made in the 
preliminary theoretical analysis of efficiency for 
this task. First, it was assumed that regardless of the 
distribution of data per processor element, the same 
amount of computational load was done, which 
should lead to the same time expenditure. Secondly, 
it was assumed that the time spent on interprocessor 
sending’s of any degree of the same amount of data 
is not dependent on their memory choices. In order 
to understand what is really happening, the 
following sets of computational simulations test 
were carried out. For evaluation, the sequence of the 
first approach was considered when the program is 
run in a single-processor version, and thus simulates 
various geometric domain decomposition methods 
of data for the same amount of computation 
performed by each processor. 

 
Numerical results 
 
Geometric parameters are indicated in Figure 1: 

channel length L = 75, channel height H = 2, step 
height S = 1. Numerical results were obtained for 
the dimensionless numbers Re = 50, Pr = 0.7 and  
Gr = 19.1 [9]. 

 

 
 

Figure 4 – Velocity profile with vertical buoyancy forces 
for dimensionless number  

Re=50, 1T C   , 0.5
f

x x  , where 2.91
f
x  . 

 
 

 
 

Figure 5 – Temperature profile with vertical buoyancy 
forces for dimensionless number  

Re=50, 1T C   , 0.5
f

x x  , where 2.91
f
x  . 

 
 

Figure 4 shows the comparison of the 
longitudinal velocity profile with the numerical data 
of Lin et al. [9] at the point x/xf = 0.5,  
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where xf = 2.91. Figure 5 shows the comparison of 
temperature profiles with the numerical data of Lin 
et al. [9] at the point x/xf = 0.5, where xf = 2.91. It 
can be seen from the figures that the mathematical 
model and the numerical algorithm which is used in 
this paper is coincided with the numerical results 
obtained by Lin et al. [9]. Figure 6 shows the 
streamlines and the horizontal velocity contour for 
dimensionless numbers Re = 50, Pr = 0.7 and  
Gr = 19.1. Figure 7 shows the vertical velocity 
contour for dimensionless numbers Re = 50,  
Pr = 0.7 and Gr = 19.1. Figure 8 shows the 
temperature profile for dimensionless numbers  
Re = 50, Pr = 0.7 and Gr = 19.1. For a better 
understanding of this process from figures 6-8 can 
be seen the development of the backward-facing 
step flow with vertical buoyancy force: the 
initiation and process of the development of the 
region of flows reconnection with taking into 
account the buoyancy forces. 
 

 
Figure 6 – The contour of the horizontal velocity 

component with streamlines for dimensionless numbers 
Re=50, Pr=0.7 and Gr=19.1. 

 

 
 

Figure 7 – The contour of the vertical velocity 
component for dimensionless numbers  

Re=50, Pr=0.7 and Gr=19.1. 
 

 
 

Figure 8 – Temperature contour for dimensionless 
numbers Re=50, Pr=0.7 and Gr=19.1. 

 
 
Conclusion 
 
Numerical studies of the laminar flow were 

carried out by the zone of joining the flows behind 
the backward-facing step with taking into account 
the buoyancy forces. This gave a deeper insight into 
the internal flow behind the backward-facing step 
and the processes of flows reconnection under the 
influence of temperature effects, which in turn gave 
an idea of the further appearance of secondary 
zones. The distance from the ledge to the canal 
boundary is 4 times the channel height, for a more 
detailed study of the backward-facing step flows 
with taking into account the buoyancy forces [9]. 
The numerical data of the velocity distribution 
showed the formation of a primary reattachment 
zone of backward-facing step flows. To numerically 
solve the system of Navier-Stokes equations, the 
projection method was used. From numerical results 
can be seen that the realized numerical method 
gives a small error in comparison with the 
numerical results of other authors [9] for the 
dimensionless numbers Re = 50, Pr = 0.7 and  
Gr = 19.1. 

Also in this paper is used a parallel algorithm to 
obtain fast numerical results. This parallel algorithm 
is based on one-dimensional, two-dimensional and 
three-dimensional domain decomposition method. 
The numerical results from the 3D cavity flow test 
problem, which used 1D, 2D and 3D domain 
decomposition method showed that 3D domain 
decomposition is not time-consuming compared to 
2D domain decomposition, for the number of 
processors that does not exceed 250,  
 
 
 



49A. Issakhov et al.

International Journal of Mathematics and Physics 8, №2, 43 (2017)

and 3D domain decomposition has more time-
consuming software implementation and the use of 
2D domain decomposition is sufficient for the scope 
of the problem. That’s why for backward-facing 
step flow with vertical buoyancy force is used 2D 
domain decomposition. It should also be noted that 
setting the boundary conditions is an important 
process. In the future, this mathematical model and 
a parallel numerical algorithm can be applied to 
various complex flows taking into account the 
buoyancy forces. 
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