
© 2017 al-Farabi Kazakh National University Printed in Kazakhstan

International Journal of Mathematics and Physics 8, №2, 13 (2017)

IRSTI 20.17.17

1G.T. Balakayeva, 1*D.K. Darkenbayev, 2Chris Phillips
1Faculty of Information Technologies, al-Farabi Kazakh National University, Almaty, Kazakhstan

2University of Newcastle upon Tyne, Newcastle, Great Britain
*e-mail: dauren.kadyrovich@gmail.com

Investigation of technologies of processing of big data

Abstract. An overview of the technologies and methods is presented, on the basis of which the authors
of this article model the processing of a large amount of data, developing a web application. In particular,
it is proposed to combine models to improve the efficiency of processing large amounts of data. Large
data set before traditional storage systems and processing a new challenge. This article analyzes possible
methods their decisions, limitations that do not allow to do it effectively, and also provides an overview of
three modern approaches to working with large data: NoSQL and real-time event flow processing. Analysis
of large data requires the use of technology and the means to implement highly productive computing.
The main factors of the problem are, first of all, the complexity and the second physical volume of the
information collection. It should be noted that the actual processing of data includes the construction of the
algorithm and the time for its description and debugging. Unique data collections require the development
of unique algorithms, which increases the total processing time by an order of magnitude.
Key words: BigData, DataMining, modeling of large data processing, NoSQL, data analysis, modeling,
analysis.

Introduction

One of the topical tasks of many fields of
science and technology is the task of processing
large amounts of data, for example. The use of
effective technologies of processing of large data
allows enterprises to take a new level of work in
such areas as: improving the quality of service,
product development, risk management, security,
cost optimization. The processing large amounts
of data is relevant for geoinformatics, aerospace
imagery obtained from remote sensing of the Earth,
bioinformatics – analysis and ordering of genomic
and proteomic information, etc.

The information value of large data is obvious,
the proof of the topic is a set of tasks that can be
solved by analyzing information flows of large data:

- forecast of the outflow of customers – based on
analysis of data from call centers, technical support
services and website traffic;

- creation of predictive models
- detection of fraud in real time

- risk analysis
- construction of situation rooms
- operative analytical processing, etc.
To solve the problem of large amounts of data, a

special version of NoSQL databases was developed
(http://www.nosql-database.org). A comparison of
the properties of relational databases and NoSQL is
presented in the table below [1,2].

Table 1 – Comparison of relational base data and NoSQL

Relational databases NoSQL databases
Complex data relationships

Scalability
Static memory

Universal properties and
functions

Very simple relationship
Arbitrary scheme;
unstructured data
Distributed Processing
The memory is scaled
together with the computing
resources
The system is application and
developer oriented

14 Investigation of technologies of processing of big data

International Journal of Mathematics and Physics 8, №2, 13 (2017)

NoSQL database features

There are not many common characteristics for
all NoSQL, since many different systems are hidden
under the NoSQL label. Many characteristics are
peculiar only to certain NoSQL databases, this we
will certainly mention in the listing.

1. Do not use SQL
This refers to ANSI SQL DML, since many

databases try to use query languages similar to the
well-known favorite syntax, but it was not possible
to fully implement it, and it is unlikely to succeed.
Although there are rumors that startups are trying to
implement SQL, for example, in Hadup.

2. Unstructured (schemaless)
 The sense is that in NoSQL databases, unlike

relational databases, the data structure is not
regulated (or poorly typed if analogies are made
with programming languages) – you can add an
arbitrary field in a separate line or document without
first declaring the structure of the entire table. Thus,
if there is a need to change the data model, the
only sufficient action is to reflect the change in the
application code.

For example, when renaming a field in MongoDB:

BasicDBObject order = newBasicDBObject();
order.put(“date”, orderDate); // this field was a

long time ago
order.put(“totalSum”, total); // we used to simply

“sum”

If we change the logic of the application, then we
expect the new field also when reading. But because
there is no data schema, the totalSum field is missing
from other existing Order objects. In this situation,
there are two options for further action. The first is
to bypass all documents and update this field in all
existing documents. Due to the amount of data, this
process occurs without any locks (comparable to
the alter table rename column), so during an update,
existing data can be read by other processes during
the update. Therefore, the second option – checking
in the application code – is inevitable:

BasicDBObject order = newBasicDBObject();
Double totalSum = order.getDouble(“sum”); //

This is an old model
if (totalSum == null)
totalSum = order.getDouble(“totalSum”); // This

is an updated model [3].

And already with the re-recording we will
write this field into the database in a new format.

A pleasant consequence of the lack of a scheme is
the effectiveness of working with sparse data. If
there is a date_published field in one document,
and not in the second one, then no date_published
field for the second field will be created. This is,
In principle, logical, but less obvious example –
the column-family NoSQL database, which uses
familiar concepts of tables columns. However, due
to the absence of the schema, the columns are not
declared declaratively and can be changed added
during the user session of working with the database.
This makes it possible in particular to use dynamic
columns to implement lists [4]. The unstructured
scheme has its drawbacks – in addition to the above
overhead in the application code when changing the
data model – the absence of all possible restrictions
from the database (not null, unique, check constraint,
etc.), plus additional difficulties in understanding
and controlling the structure data in parallel work
with the database of different projects (there are no
dictionaries on the side of the database). However, in
a rapidly changing modern world such flexibility is
still an advantage. An example is Twitter, which five
years ago, together with a tweet, stored only a little
extra information (time, Twitter handle and a few
more meta information bytes), but now in addition to
the message itself, a few more kilobytes of metadata
are stored in the database [5].

Representation of data in the form of
aggregates

Unlike the relational model, which preserves the
logical business entity of the application in various
physical tables for normalization purposes, the
NoSQL repositories operate with these entities as
with integral objects.

In this example, the aggregates for the standard
conceptual relational model of e-commerce “order-
order items-payments-product” are demonstrated. In
both cases, the order is combined with the positions
into one logical object, each position holding a
reference to the product and some of its attributes,
for example, the name (such a denormalization is
necessary so as not to request the product object when
retrieving the order – the main rule of distributed
systems is the minimum “Joins” between objects).
In one aggregate, payments are combined with an
order and are an integral part of the object, in another
aggregate they are placed in a separate object.
This demonstrates the main rule of designing data
structures in NoSQL databases – it must comply with
the application requirements and be optimized to the
most frequent requests. If payments are regularly

15G.T. Balakayeva et al.

International Journal of Mathematics and Physics 8, №2, 13 (2017)

withdrawn along with the order – it makes sense
to include them in a common object, but if many
requests work only with payments – then it is better
to put them in a separate entity. Many will argue

that working with large, often denormalized, objects
is fraught with numerous problems when trying to
access arbitrary data requests, when the requests do
not fit into the structure of the aggregates [6].

Distributed systems, without shared resources
(share nothing)

Again, this does not apply to the database graph,
whose structure by definition is poorly distributed
over remote nodes. This, perhaps, is the main leitmotif
of the development of NoSQL databases. With the
avalanche-like growth of information in the world
and the need to process it in a reasonable time, the
problem of vertical scalability has risen – the speed
of the processor has stopped at 3.5 GHz, the speed
of reading from the disk is also growing at a slow
pace, plus the price of a powerful server is always
greater than the total price of several simple servers.
In this situation, conventional relational databases,
even clustered on an array of disks, can not solve the
problem of speed, scalability, and bandwidth. The
only way out of this situation is horizontal scaling,

when several independent servers are connected by a
fast network and each owns / processes only part of
the data and / or only part of the read-update requests.
In such an architecture, to increase the storage
capacity (capacity, response time, bandwidth), you
only need to add a new server to the cluster – that’s
all. The procedures of shading, replication, provision
of fault tolerance (the result will be obtained even
if one or more servers have ceased to respond), the
NoSQL database itself handles the redistribution of
data in case of adding a node. Briefly I will present
the main properties of distributed NoSQL databases:

Replication – copy data to other nodes during
the upgrade. Allows you both to achieve greater
scalability, and increase the availability and
security of data. It is accepted to subdivide into
two types:

Master-slave:

16 Investigation of technologies of processing of big data

International Journal of Mathematics and Physics 8, №2, 13 (2017)

and peer-to-peer:

The first type assumes good read scalability (it
can occur from any node), but an unscaled entry
(only in the master node). Also there are subtleties
with ensuring constant accessibility (in case of the
master falling either manually or automatically in its

place one of the remaining nodes is assigned). For
the second type of replication, it is assumed that all
nodes are equal and can serve both read and write
requests.

Sharding – the division of data into nodes:

17G.T. Balakayeva et al.

International Journal of Mathematics and Physics 8, №2, 13 (2017)

Sharding was often used as a “crutch” for
relational databases in order to increase speed and
throughput: a user application partitioned data into
several independent databases and, when prompted
by the user, accessed a specific database. In NoSQL
databases, shading, like replication, is automatically
produced by the database itself and the user application
is separate from these complex mechanisms [7].

NoSQL databases technology

NoSQL databases technology (for example,
Cassandra) is not intended to replace relational
databases, but rather it helps to solve problems when
the amount of data becomes too large. NoSQL often
uses clusters of low-cost standard servers. This
solution allows you to reduce the cost per gigabyte
per second several times [8]. NoSQL databases
continue to gain popularity. If five years ago they
were not taken seriously , now the situation has
radically changed. NoSQL databases become not
just competitive, they are already leaders in projects
requiring high performance. The state of the non-
relational database technology has been investigated
and several NoSQL databases have been categorized
with respect to them: consistency, data models,
replication and fulfillment of query capabilities.
There are quite a few different models and functional
systems for NoSQL databases [9]:

1. Warehouse key (usually store data in memory)
The key-value store works with key-value data,

for example, as a dictionary. There is no place for
structure or connections. After connecting to the
server (for example, Redis), the application can
set the key and its value, and subsequently receive
these data on request. Such DBMSs are usually used
to quickly store basic data, and sometimes not so
basic, if you calculate the costs of the processor and
memory. They are usually very fast, workable or easily
scalable (it’s good to use such databases for storing
sessions, cache, counters, visits, etc.). As in the case
of relational DBMSs, there are many open source
products. Of the most popular we note memcached
(and related memcachedb and membase), Voldemort,
Redis and Riak .

2. Distributed storage (Column-oriented) –
Cassandra, HBase, etc. (designed for very large
amounts of data) . These databases work just fine
by creating collections of one or more key-value
pairs that in total correspond to one record. Unlike
traditional tables in relational models, these databases
do not require a preliminary description of the data
structure. In general, distributed storage is nothing
more than a two-dimensional array, where each key
(record) contains one or more key-value pairs tied to
it. Such a system allows you to store and use large
amounts of unstructured data (one entry with a large
amount of additional information). Such databases

18 Investigation of technologies of processing of big data

International Journal of Mathematics and Physics 8, №2, 13 (2017)

are usually used when there are not enough simple
key-value pairs, and you need to store a large amount
of records with different information.

3. Document-oriented DBMS – MongoDB,
Couchbase, etc. (designed to store hierarchical data
structures – documents)

These databases allow much more nesting and
complexity of the data structure. (for example,
a document embedded in a document embedded
in a document). Documents remove the nesting
constraints of the first and second levels of the key-
value type in distributed storages. In general, you can
describe an arbitrarily complex data structure as a
document and save it in such a database. Recently,
in connection with the development of the Internet,
search engines, social networks and highly loaded
services are actively developing, which must
handle large amounts of information and answer
a huge number of requests. This requires not only
a maximum consideration of the specifics of the
information being processed, but also the transition
to distributed computing. No server of any size is
capable of providing the required performance [10].

Conclusion

The authors of this article in their work on the
development of Web applications for processing
large amounts of data take into account the above
features of the functioning of databases. Including,
there are three basic requirements for heavily loaded
applications [11]:

• Lots of data: the largest of web applications
handle data volumes of the order more than those
intended for managing relational databases;

• Huge number of users: numbered in millions,
access to systems simultaneously and constantly;

• Complex data: Typically, these applications
are not simple processing of tabular data that can be
found in many commercial and business applications.

The relational database technologies that have
dominated the IT industry since 1980 began to
show their weaknesses in the transition to web
scales in these three aspects, so a growing number
of people began to look for an alternative. Such
an alternative became NoSQL database. In the
advantages of using MongoDB, such as deep query
capability, simple scalability, document-based
storage, we made sure of the process of working on

the web application “Electronic library for students,
teachers and researchers” using MongoDB, NodeJS,
PhpStorm [12]. The results of this research are used
by the authors of this article to further simulate the
processing of large amounts of data and develop a
Web application.

References

1. From SQL to NoSQL and back [Electronic
resource]. – Access mode: http://www.osp.ru/
os/2012/02/13014127//, 2014. – P. 114-118.

2. Balakayeva G.T., Nurlybayeva K. Simulation
of Large Data Processing for Smarter Decision
Making. AWER Procedia Information Technology
& Computer Science, 3rd World Conference on
Information Technology (WCIT-2012). – 2013. –
Vol. (03). – P.1253-1257

3. Redmont E., Uilson R. Seven Database in
Seven Weeks: A Guid to Modern Databases and the
NoSQL Movement. Publishing house “DMK Press”.
– 2018. – P. 418-420. ISBN: 978-5-97028-455-2.

4. Pramod J., Sadalage, Martin Fowler. NoSQL
Distilled. Publishing house “Moskva, Sankt-
Peterburg-Kiev”. – 2013. – P. 135-140.

5. Gaurav Vaish .Getting Started with NoSQL.
Packt books-Packt Publishing. – 2013. – P. 127-137.
ISBN: 978-1849694988

6. Dan Sullivan. NoSQL for mere Mortals.
Published by John Wiley&Sons, Inc.2014. – P. 321-
324.

7. Adam Fowler. No SQL for Dummies. – 2015.
– P. 231-237. ISBN-13: 978-1118905746

8. Guy Harisson. Next Generation Data bases. –
2016. – P. 245-247. ISBN-13: 978-1-48-42-1329-2.

9. Neal Leavitt. Will NoSQL Databases Live Up
to Their Promise? Computer, 43:12–14, February
2010. – P. 128-132.

10. Gantz John, Reinsel David. The digital
universe in 2020: Big Data, Bigger Digital Shadow
s, and Biggest Grow th in the Far East. URL:
http:// www.emc.com/collateral/analyst-reports/
idc-the-digital-universe-in-2020.pdf (Date duration
10.07.2014)

11. Balakayeva G.T., Melisova A.E. Modeling
large data with NoSQL. Nauka i Studia. – 2017. –
Vol. 8(169). – P. 35-37.

12. Stefan Edlich. NoSQL Databases, Available
at http://nosql-database. – 2011. – P.105-107.

