
© 2016 al-Farabi Kazakh National University                                    Printed in Kazakhstan

International Journal of Mathematics and Physics 7, №1, 40 (2016)

UDC 519.63; 519.684 

* Issakhov A., Shaibekova A.A.

Faculty of Mechanic-Mathematics,  
al-Farabi Kazakh National University, Almaty, Kazakhstan 

*e-mail: alibek.issakhov@gmail.com

Mathematical modelling of flow around obstacles  
with complex geometric configuration in a viscous incompressible medium 

Abstract. In this paper, we numerically investigate flow around obstacles with complex geometric 
configuration in a viscous incompressible environment. The Navier-Stokes equations were used to 
modeling the flow around obstacles with complex geometric configuration. The numerical algorithm was 
constructed by using projection method. At the first stage the intermediate speed is determined by the 5-
step Runge-Kutta method. At the second stage the results of intermediate velocity used to determine the 
pressure field. Poisson equation for the pressure field is solved numerically by using the Jacobi method. 
The numerical algorithm is tested at flow around the square cylinder and compared with experimental 
data, which gives good results. Also, in this work simulated non-stationary flow around one and two 
cylinders obstacles arranged opposite each other. 
Key words: The Navier-Stokes equations, finite volumes method, Karman vortex shedding, an 
aerodynamic tube. 

Introduction 

One of the main problems of the mechanics is 
the study of viscous incompressible environment. 
Flow around obstacles with complex geometric 
configuration, such as flow around a cylinder with a 
circular cross-section, is well-studied problem. In 
many mechanical engineering applications, 
separated flows often appear around any technical 
object. Tall buildings, monuments, and towers are 
permanently exposed to wind. Particular attention to 
the aerodynamic stability of constructions began to 
pay after some unfortunate incidents such as the 
collapse of a hanging bridge over the river Tacoma 
(USA, November 7, 1940), three towers on the 
thermal power plant Ferry bridge (England, 
November 1, 1965), the accident at the Nuclear 
Power Plant Turkey Point (USA, 1985). Very often, 
research is conducted on the examples of two-
dimensional cylinder flow problems varying cross-
sectional shape: circular, square, rectangular, 
elliptical, etc. In this paper tested numerical 
algorithm as an example of flow of the square 
cylinder and a study of non-stationary two-
dimensional flow over a cylinder and two cylinders 
with a circular cross-section, located opposite each 
other. 

Mathematical formulation of the problem 

To describe the motion of the liquid and the gas 
around the geometric configuration of a viscous 
incompressible unsteady environment used two-
dimensional Navier-Stokes equations with constant 
density and kinematic viscosity: In our case, the 
system consists of two equations: motion equations 
and the continuity equation. 






















































































2

2

2

2

2

2

2

2

1

1

0

y
v

x
v

y
p

y
vv

x
vu

t
v

y
u

x
u

x
p

y
uv

x
uu

t
u

y
v

x
u







 

where u, v – velocity components, p – pressure,  – 
density, v – the kinematic viscosity, t – time, yx, - 
space coordinates. 

In this paper for testing the numerical method is 
considered a two-dimensional problem of flow 
around a square cylinder in a viscous 
incompressible environment. Results obtained from 
a numerical simulation were compared with 
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experimental data provided in paper [3]. Also in this 
work considered two problems with flow around: 
1) structure with a circular cross-sectional shape;
2) two structures with a circular cross-sectional
shape located opposite each other. 

Numerical algorithm 

Projection method is used to solve the Navier-
Stokes equations (1) [7, 10]. It is assumed that the 
transfer of momentum carried out only by 
convection and diffusion in the first step. The 
intermediate velocity field is determined by the 5-
step of Runge-Kutta method. In the second stage, 
due to the known intermediate velocity field, the 
pressure field is found. Poisson equation for the 
pressure field is solved by Jacobi method [4]. In the 
third step it is assumed that the transfer is carried 
out only by the pressure gradient [8, 9], i.e.: 
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Experimental system of viscous flow over a 
square cylinder 

Consider the problem of two-dimensional 
square-shaped cross-flow cross-section of the 
tubular body limitless laminar flow. [4]. A 
rectangular Plexiglas channel (Dimensions (m): L = 
0.9255 stream wise; B = 0.01 transverse; W = 0.1 
span wise) was used as the primary test section in a 
closed-loop configuration. A stainless steel square 
cylinder of diameter (D = 0.0025 m) was 
symmetrically affixed with the help of two 
miniature screws at a distance of 0.693 m from the 
inlet to the test section. The blockage ratio (β = 
D/B) was fixed at 0.25.The device D (Dimensions 
(m): L = 0.4; B = 0.2; W = 0.5) was connected to 
the test section using an intermediate channel 
(Dimensions (m): L = 0.5; B = 0.04; W = 0.1). This 
device effectively distributes the flow at the 
entrance to ensure a uniform and constant flow rate 
at the inlet of the test section. This channel had the 
hole (0.25 inch diameter) which was used to inject a 
colored dye through a streamlined stainless steel 
tube (1 mm diameter). 

Furthermore, the apparatus 1 m length were 
installed inside the machine, to remove any swirl. 
Water flow comes from HT tank by a pump P to 
reservoir CHT1. CHT1 tank was connected to the 
apparatus through D FV valve regulating the 
amount of water flow. For smooth transition of the 
water flow from the apparatus A to the intermediate 
conduit used QE1, QE2 elliptical equipment. 
(Figure 1). 

The Figure 2 illustrates a scheme of the test 
section that shows lines across which the time-
averaged velocity profiles were measured. Physical 
scheme and the boundaries of computational domain 
are shown in Figure 1. 
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Figure 1 – Scheme of experimental system 

Figure 2 – Scheme of test section 

Results of numerical simulation 

The system of equations (1) is closed by the 
following boundary conditions: for the velocity 
components are set on the wall no slip condition and not 
overflow and at the inlet – parabolic profile, at the exit – 

"outlet" boundary conditions. For the pressure on all 
borders set Neumann conditions. The parameters of the 
computational domain are presented in Figure 3 for the 
numerical simulation of flow around square cylinder 
problem in a viscous incompressible environment and 
comparing the results with the known results. 
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Figure 3 – Scheme of flow around a square cylinder in a viscous incompressible environment 

By using a numerical algorithm to the problem of flow around a square cylinder, the following (Figure 4) 
was obtained: 

a) 

b) 

Figure 4 – The components of the velocity and streamlines the flow around a square cylinder with the number 
of Reynolds number Re = 46 for different time layers a) t = 0.5 sec; b) t = 2 sec; a) t = 3.5 sec 

The numerical study of flow around square 
cylinder viscous flow charts velocity profiles were 
obtained and compared with the numerical and 
experimental results, given in paper [3]. (Figure 5) 
From Figure 5 it can be seen that this problem from 
the numerical study results are in good agreement 
with the experimental data [3]. 

With the help of the developed program of 
calculations to determine the velocity field over 
time, acting on a streamlined cylinder circular shape 
in a viscous incompressible environment including 
at Re = 1000 on a uniform mesh size of 225 × 500 

was performed. In the case of low Reynolds 
number, the smaller the critical Reynolds number 
Re * is formed within the stationary unseparated. 
According to published papers, the critical Reynolds 
number for flow past a circular cylinder is equal to 
Re*(40-50) [5]. 

Figure 6 indicates that at Re = 1000 is one of the 
vortices of the circular cylinder becomes so long 
that it breaks off and floats downstream with the 
fluid. The liquid for the cylinder is twisted again and 
formed new vortices. This process is known as 
Karman vortex shedding flow [5] (Figure 6). 



44

International Journal of Mathematics and Physics 7, №1, 40 (2016)

Mathematical modelling of flow around obstacles with complex geometric configuration ...

Figure 5 – Velocity profiles in certain parts of the 
computational domain at Re = 46 

Figure 6 – Velocity contours at a Reynolds number  
of 1000 and t= 2 sec. 

Flow around two circular cylinders located 
opposite each other was examined at Re = 1000 
distance between the cylinders L = 1, the height of 
the computational domain D = 2.2. Depending on 
the distance between the two cylinders are formed 
different types of flows [5]. 

Figure 7 shows the flow rates at various time 
points when the distance between the cylinders is 
L = 2,2. With these arrangement of cylinders formed 
two vortices that behave more independently. 
(Figure 7). 

By reducing the distance between the cylinders, 
it can be seen that the vortices formed near the 
cylinders influence each other [6]. 

Figure 7 – Velocity contours at a Reynolds number  
of 1000 and t= 2 sec. 

Conclusion 

In carrying out work on the basis of numerical 
solution of two-dimensional Navier-Stokes 
equations conducted test calculations of the method 
used for the problem of flow around a square 
cylinder in a viscous medium, and studied flow 
around a circular cylinder. 

As a result of the study, the data obtained can be 
used during the installation and location of the 
building constructions, taking into account the 
aerodynamic elasticity. 

It should be noted that the advantages discussed 
in the approach are: simplicity of software 
implementation schemes of high order of spatial 
sampling, the effectiveness of its application for the 
calculation of the steady and unsteady flows. 
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